Building hierarchical designs in Verilog

Opritoiu Flavius
flavius.opritoiu@cs.upt.ro

October 16, 2024

Verilog hierarchies

Objectives:
» Learn how to instantiate a module

» Construct a design hierarchy

Hierarchical design
- Facilitates design of complex architectures
- Promote design reuse

Instance: a copy of a module used as component in a larger design.
An instances has:

® A module: provides the definition of the instance.
® A container. the design in which the instance is created.

Creating a new instance is referred to as instantiation.

(© 2024 Opritoiu Flavius. All Rights Reserved.

Instantiation

An instance is constructed by providing:
1. the name of the module to be instantiated

2. the name of the instance (differentiate from other instances of
the same module)

3. the list of connections

List of connections specifies which signals from container connects
to which ports of the instance.

A connection is specified by:
.<module_port>(<container_signal>), in which
® module_port is a port of the instance

® container_signal is a signal from container (can be a port of
container)

(© 2024 Opritoiu Flavius. All Rights Reserved.

4-to-1 multiplexer

Exercise: Build a 4-to-1 multiplexer out of 2-to-1 multiplexers.

Solution: The 4-to-1 multiplexer, mux_2s, uses the 2-to-1
multiplexer module, mux, having the inputs and outputs as
depicted in the architecture bellow:

(© 2024 Opritoiu Flavius. All Rights Reserved.

4-to-1 multiplexer (contd.)
The Verilog code implementing the previous architecture:

1 module mux (20 mux instl (
2 input s, il, i0, 21 .i0(d[0]),
3 output m 22 Lil(d[1]),
4) 23 .s(s[0]),
2 .m(f)
6 always @ (%) 25)
7 if (s) m=il; 26 mux inst2 (
8 else m= i0; 27 .i0(d[2]),
9 endmodule 28 i1 (d[3]),
29 .s(s[0]),
11 module mux_2s (30 .m(g)
12 input [3:0] d, 31 ;
13 input [1:0] s, 32 mux inst3 (
14 output o 33 Li0(f),
15); 34 Lil(g),
35 .s(s[1]),
7 wire f; 36 .m(o)
18 wire g; 37)

33 endmodule
(© 2024 Opritoiu Flavius. All Rights Reserved.

4-to-1 multiplexer (contd.)

The instance from line 20-25 of the code in previous slide has the
following components:

® the module to be instantiated is- mux (it must be the name of
an existing Verilog mo

21 .io(d[ol),
2 .i1(d1l,
23 .s(s[0]),
24 .m(£)

%5)

(© 2024 Opritoiu Flavius. All Rights Reserved.

4-to-1 multiplexer (contd.)

Block diagram details emphasizing the instl instance and its list of

connections:
s d
, d[0]+(4 d[l]i 20 mux Jnstl
< v 21 -i0 (ydafol|) ,
5[0] 22 I1(d[1])v
S imLux 23 .s(s[0]),
m 24 .m(f)

st

Elements of the first connection:

® 0 - port of the instantiated module
e /d[0] - signal from container ([d[0] is a port in container) to

which port [i0 is connected

(© 2024 Opritoiu Flavius. All Rights Reserved.

4-to-1 multiplexer (contd.)
Internal wires connect internal instances
® connect one instance's output to another instance’s input

® must be declared inside the container module as wires

fffffff ;T%ﬁ*

Internal wire declaration for the mix_2s architecture:

17 wire

;
18 wire .

(© 2024 Opritoiu Flavius. All Rights Reserved.

4-to-1 multiplexer (contd.)

"""" ﬁ;mux | | X |
3 %)
b

«
=4
S
e

3
c

%)

Verilog code bellow
® connects instl's output, m, to wire f (left)
® connects inst3's input, i0, to wire f (right)

20 mux instl (32

21 |0§j{(1)}; 33

22 Jil , 34 i ,
23 .S(S[O]), 35 Siig[z-]),
24 .m(£f) 36 -m(o)

5);)

(© 2024 Opritoiu Flavius. All Rights Reserved.

Three-to-eight-lines decoder with enable input

Exercise: Build a 3-selection lines decoder with enable input and
active low outputs using the dec_2x4 module from (slide 12).

Solution: The architecture is depicted bellow.

|
S) S[1:0] s[2] s[1:0]
2
v

]
]]
]]
] S S]
]]
. | dec_2x4 e e dec_2x4 |
]]
] Y Y]
| 4 4 |
| y[7:4] t}’[3-'0] 18,
e e K

(© 2024 Opritoiu Flavius. All Rights Reserved.

http://cs.upt.ro/~opritoiu/ca/lab_3/verilog_always.pdf

Three-to-eight-lines decoder with enable input (contd.)

Verilog code implementing the architecture from previous slide:

1 module dec_3x8 (
2 input e,

3 input [2:0] s,
4 output [7:0] vy
5)5

7 dec_2x4 il (

8 .s(s[1:0]),
9 .e(e & s[2]),

10 y(y[7:4])

13 dec_2x4 i2 (
14 .s(s[1:0]),
15 .e(e & ("s[2])),
16 : -y(y[3:0])

18 endmodule

(© 2024 Opritoiu Flavius. All Rights Reserved.

