
Iterated addition

Opriţoiu Flavius
flavius.opritoiu@cs.upt.ro

November 22, 2024

Introduction

Objectives:

▶ Construct structures for multi-operand addition

Iterated algorithms’ hardware implementation implies two distinct
phases:

• constructing the state-related part, which stores the
algorithm’s state from the current to the next iteration

• implement the data processing part, which updates the
algorithm’s state from one iteration to the other

© 2024 Opriţoiu Flavius. All Rights Reserved.

Sequential multi-operand addition
Each clock cycle a new operand is delivered on input register, X.
The following algorithm calculates the result of a multi-operand
addition and stores it in accumulator A:

1: A← 0
2: loop
3: A← A+ X
4: end loop

having the following hardware implementation:

Register

+

X

Register

A

© 2024 Opriţoiu Flavius. All Rights Reserved.

Solved problem
Datapath of a cryptographic application

Exercise: Construct the datapath of an architecture for the 256-bit
Secure Hash Algorithm 2 (SHA-2) algorithm (see [FIPS15], section
5.1.1).

Solution: The unit receives at input 512-bit blocks which it process
sequentially in order to determine the hash associated with the
received message. The hash result is delivered at the output as a
256-bit binary vector.

The block processing implies the foolowing operations:

▶ Message schedule: extends the 16 words of a received block
to 64 words

▶ Compression function: takes one word from the message
schedule and updates, in 64 iteration, variables a, b, c, d, e, f,
g and h

▶ Hash update: adds to the current hash value, split in 8 words,
the values of the a to h variables

© 2024 Opriţoiu Flavius. All Rights Reserved.

Solved problem (contd.)
Message schedule

The 512-bit block is split in 16 32-bit words: M0, M1, ... , M15,
with , M0 representing the most significant 32-bit of the block and,
M15 representing the least significant 32-bits.

For 64 iterations, in each clock cycle, the message schedule
constructs a new word in the least significant position (the first
constructed word comes after M15, and this first generated word
will be followed by the next one etc.). In each iteration, the most
significant word, M0, is delivered at the output.

At any given moment only 16 words are required for construction
of the next word. As a consequence, the new word will occupy the
least significant position (M15) all the other more significant words
being shifted on the immediate, more significant, position (M15

will move to M14, M14 to M13, ..., M1 to M0).

© 2024 Opriţoiu Flavius. All Rights Reserved.

Solved problem (contd.)
Message schedule

Message schedule is formally described by the algorithm bellow:

Input: Block BLK ▷ BLK is split into 16 32-bit words
Output: Word M0 on 32-bit ▷ Delivers M0 in each iteration
1: procedure MessageSchedule(BLK)
2: M0 ← BLK [511 : 480] ▷ Initialize the 16 words, Mi

3: M1 ← BLK [479 : 448]
4: ...
5: M14 ← BLK [63 : 32]
6: M15 ← BLK [31 : 0]
7: for i = 0 to 63 do ▷ Construct a new word and update the 16 stored words
8: NEW WORD ← σ1(M14) +M9 + σ0(M1) +M0

9: M0 ← M1

10: M1 ← M2

11: ...
12: M14 ← M15

13: M15 ← NEW WORD
14: end for
15: end procedure

The addition operator, +, in this slide and the next to come is
performed (mod 232).
© 2024 Opriţoiu Flavius. All Rights Reserved.

Solved problem (contd.)
Message schedule

Functions σ0(α) and σ1(β) are defined bellow:

σ0(α) = RtRotate(α, 7) ⊕RtRotate(α, 18)⊕ RtShift(α, 3)

σ1(β) = RtRotate(β, 17)⊕RtRotate(β, 19)⊕ RtShift(β, 10)

where: RtRotate(x , p) rotates word x to the right by p positions;
RtShift(x , p) shifts word x to the right by p bits (adding 0s to
msb) and ⊕ denotes the EXCLUSIV-OR operator

For implementing these operators, one can use Verilog functions:

1 f u n c t i o n [3 1 : 0] RtRotate (i n pu t [3 1 : 0] x , i n pu t [4 : 0] p) ;
2 r eg [6 3 : 0] tmp ;
3 beg in
4 tmp = {x , x} >> p ;
5 RtRotate = tmp [3 1 : 0] ;
6 end
7 end f un c t i o n

This function is called by: RtRotate(alpha,7)

© 2024 Opriţoiu Flavius. All Rights Reserved.

Solved problem (contd.)
Message schedule

The datapath component that implements the message schedule is
depicted in the figure bellow:

rgst
ld

q

d

32

01
s

rgst
ld

q

d

s

M9

rgst
ld

q

d

s

M15

32 32

�0(M1)

�

blk

ld_mreg
upd_mreg

32

32

32 32 32
32 32 32

512

M0

d

rgst
ld

q

M1

s

32

32

[511÷480] [479÷448]

rgst
ld

q

d

M14

s

�1(M14)

32

32
32

[223÷192] [31÷0][63÷32]

32

32

m0

3232

01 01 01 01

Note: module rgst is available here

© 2024 Opriţoiu Flavius. All Rights Reserved.

http://staff.cs.upt.ro/~opritoiu/ca/code/rgst.v

Solved problem (contd.)
Compression function and hash update

The hash result, on 256-bit, is formed of 8 32-bit words: H0, H1,
H2, H3, H4, H5, H6 and H7, with H0 being the most significant
and H7 the least significant.

Compression function uses 8 32-bit variables: a, b, c, d, e, f, g and
h. The 8 variables are initialized to the values of words H0, ..., H7

of the current hash result. Afterwards, along 64 iterations,
variables a to h are updated based on their current value, the value
of word M0 delivered by the message schedule and the value of a
round constant, K (i).

At the end of the 64 iterations, the hash result is updated by
adding to each of the 8 words H0 to H7 the values of the variables
a to h.

The compression function followed by the hash update is
performed for each new received block.

© 2024 Opriţoiu Flavius. All Rights Reserved.

Solved problem (contd.)
Compression function and hash update

Input: Message blocks are received
Output: Hash result words H0, H1, H2, H3, H4, H5, H6, H7

1: procedure SHA256
2: InitializeHashResultWords()
3: do
4: a← H0

5: b ← H1

6: ...
7: h← H7

8: for i = 0 to 63 do
9: T1 ← h +Σ1(e) + Ch(e, f , g) + K(i) +M0 ▷ M0 from expression
10: T2 ← Σ0(a) +Maj(a, b, c) ▷ of T1 is delivered by the
11: h← g ; g ← f ; f ← e ▷ message scheduler which,
12: e ← d + T1 ▷ since performing the same
13: d ← c; c ← b; b ← a ▷ number of iterations (64), can
14: a← T1 + T2 ▷ operate in parallel with this loop
15: end for
16: H0 ← H0 + a
17: H1 ← H1 + b
18: ...
19: H7 ← H7 + h
20: while not last block
21: end procedure
© 2024 Opriţoiu Flavius. All Rights Reserved.

Solved problem (contd.)
Compression function and hash update

The SHA-256 algorithm uses the following functions:

Σ0(x) = RtRotate(x , 2)⊕ RtRotate(x , 13) ⊕ RtRotate(x , 22)

Σ1(x) = RtRotate(x , 6)⊕ RtRotate(x , 11) ⊕ RtRotate(x , 25)

Ch(x , y , z) = (x and y) ⊕ ((not x) and z)

Maj(x , y , z) = (x and y) ⊕ (x and z) ⊕ (y and z)

The above and and not operators are bit-wise (operate on vectors,
at the individual bit level). Constants K (i), indexed by current
iteration, i , are specified by the standard ([FIPS15], section 4.2.2):

i K (i)

0 32’h428a2f98
1 32’h71374491
2 32’hb5c0fbcf
...
63 32’hc67178f2

© 2024 Opriţoiu Flavius. All Rights Reserved.

Solved problem (contd.)
Compression function and hash update

The 8 words of the hash result, H0, H1, H2, H3, H4, H5, H6, H7,
are initialized to values specified by the standard ([FIPS15], section
5.3.3):

Output: Initialize the hash result words H0, H1, H2, H3, H4, H5, H6, H7

1: procedure InitializeHashResultWords
2: H0 ← 32′h6a09e667
3: H1 ← 32′hbb67ae85
4: H2 ← 32′h3c6ef 372
5: H3 ← 32′ha54ff 53a
6: H4 ← 32′h510e527f
7: H5 ← 32′h9b05688c
8: H6 ← 32′h1f 83d9ab
9: H7 ← 32′h5be0cd19
10: end procedure

© 2024 Opriţoiu Flavius. All Rights Reserved.

References

[FIPS15] National Institute of Standards and Technology, “FIPS
PUB 180-4: Secure Hash Standard,” Gaithersburg, MD
20899-8900, USA, Tech. Rep., Aug. 2015. [Online]. Available:
http://dx.doi.org/10.6028/NIST.FIPS.180-4 (Last accessed
06/04/2016).

© 2024 Opriţoiu Flavius. All Rights Reserved.

http://dx.doi.org/10.6028/NIST.FIPS.180-4

