
Implementing finite state machines in Verilog

Opriţoiu Flavius
flavius.opritoiu@cs.upt.ro

October 31, 2024

Introduction

Objectives:

▶ Describing the finite state machines in Verilog

For reading:

 Chris Fletcher: ”EECS150: Finite State Machines in Verilog”,
[Flet08]

This material will present a method for behavioural description of
Mealy type finite state machines using Verilog. The method can
be readily adapted for Moore type FSM.

The Verilog behavioural description aim to use the synthesizable
set of the HDL, facilitating direct implementation using the
synthesis tools used for digital design.

© 2024 Opriţoiu Flavius. All Rights Reserved.

Case study
Implementing a Mealy machine described by transition diagram

Exercise: Implement the following FSM:

S0

S1

S2
S3

a&b/m

a/m, n

∗/m

c/

c/n
b/n

b/n

a&b/n

© 2024 Opriţoiu Flavius. All Rights Reserved.

Case study (contd.)
Implementing a Mealy machine described by transition diagram

By analyzing the transition diagram, the following observations can
be made:

• the machine has 3, 1-bit inputs: a, b si c

• at the output, the automaton can activatre any of its 2, 1-bit
outputs: m si n

• the machine can be in any of its 4 states: S0, S1, S2 sau S3

• state S0 is the initial state (activated after device’s
initialization)

A transition between two states of the machine is symbolized by an
arc, labeled with the logic condition taht triggers the respective
transition, together with the activated outputs.

The format of the arc’s label is :
logic condition/activated output, ...

© 2024 Opriţoiu Flavius. All Rights Reserved.

The five steps of implementing finite state machines
Step 1

Define named constants for each state of the machine. The
constants are declared using localparam keyword. Each state
constant has a distinct value, represented on the necessary number
of bits (for a machine with 13 states, the state constants’ values
are represented on 4 bits)

For the proposed exercise, the state constants are defined as in the
following code fragment:

1 l o c a l pa r am S0 ST = 2 ’ d0 ;
2 l o c a l pa r am S1 ST = 2 ’ d1 ;
3 l o c a l pa r am S2 ST = 2 ’ d2 ;
4 l o c a l pa r am S3 ST = 2 ’ d3 ;

Recommendation: The name of the four state constants should
include the ST suffix.

© 2024 Opriţoiu Flavius. All Rights Reserved.

The five steps of implementing finite state machines
Step 2

Define the current state and the next state signals. The current
state signal, st, is assigned values in an always block, thus being
defined with the reg specifier, on the same number of bits as the
values of the state constants.

The next state signal, st nxt, has the same number of bits as st,
and is generated by a combinational logic, dependent on the
current state, st, and the finite state machine’s inputs. However, if
st nxt is assigned values in an always block, it will be declared
with reg specifier.

For the current exercise, the two signals are defined as follows:

1 r eg [1 : 0] s t ;
2 r eg [1 : 0] s t n x t ;

© 2024 Opriţoiu Flavius. All Rights Reserved.

The five steps of implementing finite state machines
Step 3

The next state is generated based on the transition diagram, in an
combinational always block. One can use the case(st)
instruction for handling the transitions associated with each state:

1 a lways @ (*)
2 ca se (s t)
3 S0 ST : i f (! a) s t n x t = S0 ST ;
4 e l s e i f (b) s t n x t = S2 ST ;
5 e l s e s t n x t = S1 ST ;
6 S1 ST : s t n x t = S2 ST ;
7 S2 ST : i f (c) s t n x t = S3 ST ;
8 e l s e s t n x t = S1 ST ;
9 S3 ST : i f (b) s t n x t = S0 ST ;

10 e l s e s t n x t = S3 ST ;
11 endcase

Important: The implementation must assure that all possible
input configurations, for each state, are covered by the if ...

else instructions (no input configuration is left without being
handled by the Verilog code).
© 2024 Opriţoiu Flavius. All Rights Reserved.

The five steps of implementing finite state machines
Step 4

The output of the finite state machine are constructed from the
transition diagram, using a combinational always block. using the
case(st) instruction, the outputs associated with each state
transition are activated:

1 a lways @ (*) beg in
2 m = 1 ’ d0 ;
3 n = 1 ’ d0 ;
4 ca se (s t)
5 S0 ST : i f (! a) {m, n} = 2 ’ b11 ;
6 e l s e i f (b) n = 1 ’ d1 ;
7 e l s e m = 1 ’ d1 ;
8 S1 ST : m = 1 ’ d1 ;
9 S2 ST : i f (c) n = 1 ’ d1 ;

10 S3 ST : n = 1 ’ d1 ;
11 endcase end

Important: For avoiding setting outputs to their default values on
branches (such as on the else branch of instruction in line 9), all
outputs are first initialized to their default value (lines 2 and 3).
© 2024 Opriţoiu Flavius. All Rights Reserved.

The five steps of implementing finite state machines
Step 5

The current state is updated in a sequential always block. At
each triggering edge of the clock, the current state takes the value
of the next state signal. If the finite state machine has an
asynchronous reset line, it is to be checked for activation.

With small adaptations, the code fragment bellow can be used for
updating the current state for any finite state machine:

1 a lways @ (posedge c l k , negedge r s t b)
2 i f (! r s t b) s t <= S0 ST ;
3 e l s e s t <= s t n x t ;

© 2024 Opriţoiu Flavius. All Rights Reserved.

Complete Verilog implementation
1 module fsm (

2 i n pu t c l k , r s t b ,

3 i n pu t a , b , c ,

4 output r eg m, n

5) ;

6 l o c a l pa r am S0 ST = 2 ’ d0 ;

7 l o c a l pa r am S1 ST = 2 ’ d1 ;

8 l o c a l pa r am S2 ST = 2 ’ d2 ;

9 l o c a l pa r am S3 ST = 2 ’ d3 ;

10 r eg [1 : 0] s t ;

11 r eg [1 : 0] s t n x t ;

12 a lways @ (*)

13 ca se (s t)

14 S0 ST : i f (! a) s t n x t = S0 ST ;

15 e l s e i f (b) s t n x t = S2 ST ;

16 e l s e s t n x t = S1 ST ;

17 S1 ST : s t n x t = S2 ST ;

18 S2 ST : i f (c) s t n x t = S3 ST ;

19 e l s e s t n x t = S1 ST ;

20 S3 ST : i f (b) s t n x t = S0 ST ;

21 e l s e s t n x t = S3 ST ;

22 endcase

23 a lways @ (*) beg in

24 m = 1 ’ d0 ;

25 n = 1 ’ d0 ;

26 ca se (s t)

27 S0 ST : i f (! a) {m, n} = 2 ’ b11 ;

28 e l s e i f (b) n = 1 ’ d1 ;

29 e l s e m = 1 ’ d1 ;

30 S1 ST : m = 1 ’ d1 ;

31 S2 ST : i f (c) n = 1 ’ d1 ;

32 S3 ST : n = 1 ’ d1 ;

33 endcase end

34 a lways @ (posedge c l k , negedge r s t b)

35 i f (! r s t b) s t <= S0 ST ;

36 e l s e s t <= s t n x t ;

37 endmodule
© 2024 Opriţoiu Flavius. All Rights Reserved.

References

[Flet08] C. Fletcher. EECS150: Finite State Machines in Verilog.
[Online]. Available: http:
//inst.eecs.berkeley.edu/∼cs150/fa08/Documents/FSM.pdf
(Last accessed 25/04/2016).

© 2024 Opriţoiu Flavius. All Rights Reserved.

http://inst.eecs.berkeley.edu/~cs150/fa08/Documents/FSM.pdf
http://inst.eecs.berkeley.edu/~cs150/fa08/Documents/FSM.pdf

