
Verilog testbenches

Opriţoiu Flavius
flavius.opritoiu@cs.upt.ro

October 22, 2024

Introduction

Objectives:

▶ Build testbench units for verification of Verilog modules

Reading:

� Lattice Semiconductor: ”A Verilog HDL Test Bench Primer”,
Application note, [Latt99]

The Verilog module to be exercised by the testbench is referred as
Circuit Under Test (CUT).

The testbench:

- Generates input vectors for the CUT

- Analyzes the CUT’s outputs

- Provides textual information on the passed/failed tests

2 / 14

Testbench approach

Testbench construction method:

▶ for each CUT input, provide in the testbench a reg signal with
the same name and the same width

▶ for each CUT output, provide in the testbench a wire signal
with the same name and the same width

▶ instantiate the CUT module, connecting each of its ports to
the corresponding signals defined above

▶ generate the CUT inputs

For generating CUT inputs, use any of the patterns described next.

3 / 14

Generating CUT’s clock input

Generation of a 50% duty cycle clock, with given period:

localparam CLK_PERIOD = 100;

reg clk;

initial begin

clk = 1’d0;

forever #(CLK_PERIOD/2) clk = ∼clk;
end

Important: The clk signal constructed above is running
indefinitely, making the simulation to never stop!

4 / 14

Generating CUT’s clock input (contd.)

Generation of a 50% duty cycle clock, with given period, running
for a specified number of cycles:

localparam CLK_PERIOD = 100;

localparam RUNNING_CYCLES = 50;

reg clk;

initial begin

clk = 1’d0;

repeat (2*RUNNING_CYCLES) #(CLK_PERIOD/2) clk = ∼clk;
end

5 / 14

Generating CUT’s reset input

Generation of an active low, reset signal, asserted from the initial
moment for a given duration:

localparam RST_DURATION = 2;

initial begin

rst_b = 1’d0;

#RST_DURATION rst_b = 1’d1;

end

6 / 14

Generating CUT’s inputs with custom waveform

Consider a CUT with 2 inputs, i, on 2 bits and d, on 8 bits and
consider the test process to generate the inputs as in the timing
diagram bellow

i 2’d0 2’d2 2’d1 2’d3

d 8’h04 8’h0f

Since no time unit is given, for brevity, a duration of 10 time units
is consider for each configuration on input i. Because input d
modifies synchronously with i, it will change at moments multiple
of 10 time units.

Each of the two signals in the diagram above will be generated in
its own initial block.

Note: The blue, mid-height line in d’s diagram means the signal is
not driven by any source: it is in high impedance.

7 / 14

Generating CUT’s inputs with custom waveform (contd.)

The code bellow delivers stimuli on input i, 10 time units apart:
2’d0 2’d2 2’d1 2’d3

initial begin

i = 2’d0; //value of i at moment 0

#10 i = 2’d2; //value of i at moment 10

#10 i = 2’d1; //value of i at moment 20

#10 i = 2’d3; //value of i at moment 30

end

8 / 14

Generating CUT’s inputs with custom waveform (contd.)

The code bellow delivers stimuli on input d:
8’h04 8’h0f

initial begin

d = 8’h04; //value of d at moment 0

#20 d = 8’dz; //value of d at moment 20

#10 d = 8’d0f; //value of d at moment 30

end

9 / 14

Generating CUT’s inputs exhaustively

Consider a CUT with 3 inputs: a 2-bit input x, a 4-bit input d and
a single-bit input en.

The fragment bellow generates all 128 possible input
configurations (27), each one being stable for 20 time units:

integer i;

initial begin

{x, d, en} = 0;

for (i = 1; i < 128; i = i + 1)

#20 {x, d, en} = i;

#20;

end

10 / 14

Case study

Exercise: Construct a testbench for exhaustive verification of a
2-to-4 decoder with enable signal and active low outputs, whose
implementation is available here (slide 12).

Solution:
1 module d e c 2x4 tb ;
2 r eg [1 : 0] s ;
3 r eg e ;
4 wi r e [3 : 0] y ;

6 dec 2x4 cut (
7 . s (s) ,
8 . e (e) ,
9 . y (y)

10) ;

14 i n t e g e r i ;
15 i n i t i a l b eg i n
16 { s , e} = 0 ;
17 f o r (i =1; i <8; i=i +1)
18 #20 s = i ;
19 #20;
20 end
21 endmodule

11 / 14

http://cs.upt.ro/~opritoiu/ca/labs/verilog_always.pdf

Simulating the testbench in Modelsim

Download the customizable run.txt script from here and prepare
the script for your project:

▶ add all Verilog source files, separated by space, to the
sourcefiles list of line 5

▶ change the name of the top module for the topmodule
variable in line 10; typically, this is the name of the testbench
module (not the name of a Verilog source file)

▶ run the script with do run.txt

▶ use any of the specific Modelsim commands for simulation

12 / 14

http://cs.upt.ro/~opritoiu/ca/code/run.txt

Modelsim commands for simulation

add wave *

add the top module’s signals to the wave window for visual
inspection of signals

run -all

runs the simulation forever, or until no signal change value

run 600

runs the simulation for 600 time units

restart

restarts the simulation from moment 0

quit -sim

unload the simulated module without exiting the Modelsim
environment

do run.txt

recompile and restarts simulation

13 / 14

References

[Latt99] L. Semiconductor. A verilog hdl test bench primer.
[Online]. Available: https://people.ece.cornell.edu/land/
courses/ece5760/Verilog/LatticeTestbenchPrimer.pdf (Last
accessed 17/04/2016).

14 / 14

https://people.ece.cornell.edu/land/courses/ece5760/Verilog/LatticeTestbenchPrimer.pdf
https://people.ece.cornell.edu/land/courses/ece5760/Verilog/LatticeTestbenchPrimer.pdf

