Verilog testbenches

Opritoiu Flavius
flavius.opritoiu@cs.upt.ro

October 22, 2024



Introduction

Objectives:
» Build testbench units for verification of Verilog modules

Reading:
O Lattice Semiconductor: " A Verilog HDL Test Bench Primer”,
Application note, [Latt99]

The Verilog module to be exercised by the testbench is referred as
Circuit Under Test (CUT).

The testbench:
- Generates input vectors for the CUT
- Analyzes the CUT's outputs

- Provides textual information on the passed/failed tests

2/14



Testbench approach

Testbench construction method:

» for each CUT input, provide in the testbench a reg signal with
the same name and the same width

» for each CUT output, provide in the testbench a wire signal
with the same name and the same width

» instantiate the CUT module, connecting each of its ports to
the corresponding signals defined above

» generate the CUT inputs

For generating CUT inputs, use any of the patterns described next.

3/14



Generating CUT's clock input

Generation of a 50% duty cycle clock, with given period:

localparam CLK_PERIOD = 100;
reg clk;
initial begin
clk = 1°d0;
forever #(CLK_PERIOD/2) clk = ~clk;
end

Important: The clk signal constructed above is running
indefinitely, making the simulation to never stop!

4/14



Generating CUT's clock input (contd.)

Generation of a 50% duty cycle clock, with given period, running
for a specified number of cycles:

localparam CLK_PERIOD = 100;
localparam RUNNING_CYCLES = 50;
reg clk;
initial begin
clk = 1°d0;
repeat (2*RUNNING_CYCLES) #(CLK_PERIOD/2) clk = ~clk;
end

5/14



Generating CUT's reset input

Generation of an active low, reset signal, asserted from the initial
moment for a given duration:

localparam RST_DURATION = 2;
initial begin

rst_b = 1°d0;
#RST_DURATION rst_b = 1°di1;
end

6/14



Generating CUT's inputs with custom waveform

Consider a CUT with 2 inputs, /, on 2 bits and d, on 8 bits and
consider the test process to generate the inputs as in the timing
diagram bellow

1 _2do X 2'd2 X 2d1 X 2.d3

d 8'h04 ——8'hof

Since no time unit is given, for brevity, a duration of 10 time units
is consider for each configuration on input i. Because input d
modifies synchronously with /, it will change at moments multiple
of 10 time units.

Each of the two signals in the diagram above will be generated in
its own initial block.

Note: The blue, mid-height line in d's diagram means the signal is
not driven by any source: it is in high impedance.

7/14



Generating CUT's inputs with custom waveform (contd.)

The code bellow delivers stimuli on

2do X 2'd2 X 2d1 X 2d3

initial begin

i = 2’d0; //value
#10 i = 2°d2; //value
#10 i = 2°d1; //value
#10 i = 2°d3; //value

end

of
of
of
of

He He e e

input /, 10 time units apart:

at moment O
at moment 10
at moment 20
at moment 30

8/14



Generating CUT's inputs with custom waveform (contd.)

The code bellow delivers stimuli on input d:
8'h04 ——_8'hof

initial begin
d = 8°h04; //value of d at moment O
#20 d = 8’dz; //value of d at moment 20
#10 d = 8°d0f; //value of d at moment 30

end

9/14



Generating CUT's inputs exhaustively

Consider a CUT with 3 inputs: a 2-bit input x, a 4-bit input d and
a single-bit input en.

The fragment bellow generates all 128 possible input
configurations (27), each one being stable for 20 time units:

integer i;
initial begin
{x, d, en} = 0;
for (i =1; i <128; i =1+ 1)
#20 {x, 4, en} = i;
#20;
end

10/14



Case study

Exercise: Construct a testbench for exhaustive verification of a
2-to-4 decoder with enable signal and active low outputs, whose

implementation is available

Solution:
1 module dec_2x4_tb;
2 reg [1:0] s;
3 reg e;
4 wire [3:0] vy;
6 dec_2x4 cut (
7 .s(s),
8 .e(e),
0 y(y)
10 B

14
15
16
17
18
19
20
21

(slide 12).

integer i;

initial begin
{s, e} = 0;
for (i=1; i<8;

#20 s = i;

#20;

end

endmodule

i=i+1)

11/14


http://cs.upt.ro/~opritoiu/ca/labs/verilog_always.pdf

Simulating the testbench in Modelsim

Download the customizable run.txt script from and prepare
the script for your project:

» add all Verilog source files, separated by space, to the
sourcefiles list of line 5

» change the name of the top module for the topmodule
variable in line 10; typically, this is the name of the testbench
module (not the name of a Verilog source file)

» run the script with do run.txt

» use any of the specific Modelsim commands for simulation

12/14


http://cs.upt.ro/~opritoiu/ca/code/run.txt

Modelsim commands for simulation

add wave *
add the top module's signals to the wave window for visual
inspection of signals

run -all
runs the simulation forever, or until no signal change value

run 600
runs the simulation for 600 time units

restart
restarts the simulation from moment 0

quit -sim

unload the simulated module without exiting the Modelsim
environment

do run.txt

recompile and restarts simulation

13/14



References

[Latt99] L. Semiconductor. A verilog hdl test bench primer.
[Online]. Available: https://people.ece.cornell.edu/land/
courses/ece5760/Verilog/Lattice TestbenchPrimer.pdf (Last
accessed 17/04/2016).

14 /14


https://people.ece.cornell.edu/land/courses/ece5760/Verilog/LatticeTestbenchPrimer.pdf
https://people.ece.cornell.edu/land/courses/ece5760/Verilog/LatticeTestbenchPrimer.pdf

