
Verilog introduction

Opriţoiu Flavius
flavius.opritoiu@cs.upt.ro

October 2, 2024

Introduction

Objectives:

▶ Design combinational circuits using Verilog

Reading:

 Lukasz Strozek: ”Verilog Tutorial - Edited for CS141”,
Laboratory notes, [Stro05]

Verilog Hardware Description Language (HDL):

- Describe hardware realizations in a textual representation

- Permits designing a system at different abstractions:
algorithm versus transistor level

- Permits model verification before integrating a digital device

- Synthesis tools translate Verilog models into hardware
realizations

© 2024 Opriţoiu Flavius. All Rights Reserved.

Verilog modules

Verilog description of a digital system consists of modules.

A Verilog module definition consists of:

- module’s name, preceded by the module keyword

- a list of module’s inputs and outputs, enclosed in parentheses

- module’s implementation

- the final endmodule keyword

Module’s inputs and outputs are collectively referred as ports.

Throughout this laboratory, a module’s implementation can include
the following type of statements:

- instances of other Verilog modules

- continuous assignments, introduced by the assign keyword

- always blocks

© 2024 Opriţoiu Flavius. All Rights Reserved.

Continuous assignment - assign

Have the following format:

assign <signal> = <expression>;

- signal is either a single signal or a concatenation of signals

- expression refers to a valid Verilog expression

For the assign statement, the left hand side is updated whenever
a signal in the right hand side changes.

© 2024 Opriţoiu Flavius. All Rights Reserved.

1-bit 2-to-1 multiplexer

Exercise: Implement a 1-bit 2-to-1 multiplexer using the Verilog.

Solution: The Verilog implementation and the graphical symbol of
the 1-bit 2-to-1 multiplexer are depicted bellow

1 module mux 1s 1b (

2 input d0 ,

3 input d1 ,

4 input s ,

5 output o

6) ;

8 a s s i g n o = ((˜ s) & d0) | (s & d1) ;
9 endmodule

o

d0

d1

s

mux_1s_1b

© 2024 Opriţoiu Flavius. All Rights Reserved.

1-bit 2-to-1 multiplexer (contd.)

Components of the Verilog module definition for a 1-bit 2-to-1
multiplexer:

1 module mux 1s 1b (

2 input d0 ,

3 input d1 ,

4 input s ,

5 output o

6) ;

8 a s s i g n o = ((~ s) & d0) | (s & d1) ;

9 endmodule

o

d0

d1

s

mux_1s_1b

module’ n
ame

module input

module input
module input

module’s output

© 2024 Opriţoiu Flavius. All Rights Reserved.

1-bit 2-to-1 multiplexer (contd.)

Module’s implementation uses the Verilog continuous assignment
statement, assign. The right hand side uses Verilog’s bitwise
boolean operators ∼, & and |.

1 module mux 1s 1b (

2 input d0 ,

3 input d1 ,

4 input s ,

5 output o

6) ;

8 a s s i g n o = ((~ s) & d0) | (s & d1) ;

9 endmodule

o

d0

d1

s

mux_1s_1b

bitwise complement

bitwise AND

bitwise OR

bitw
ise

AN
D

© 2024 Opriţoiu Flavius. All Rights Reserved.

Verilog busses

A Verilog bus, or a vector is a signal consisting of a collection of
wires. It is defined by specifying the highest and the lowest bit
ranks, in square brackets, followed by the bus name.

Exercise: Design a device for computing the quotient for division
by 8 of an integer, unsigned, 8-bit number.

Solution:

1 module d i v 8 (
2 i n pu t [7 : 0] i ,
3 output [4 : 0] o
4) ;

6 a s s i g n o = i [7 : 3] ;
7 endmodule

div_8
i

8

o
5

Notă: The quotient for division by 8 = 23 of an unsigned integer is
obtained by eliminating the least significant 3 bits.

© 2024 Opriţoiu Flavius. All Rights Reserved.

Verilog part-select operator
The Verilog part-select operator permits selecting a contiguous set
of lines from a bus. The part-select mechanism specifies the upper
and the lower bus ranks, between square brackets, delivering all
bus’ lines in between them.

Exercise: Design o module with a selection line s and a 64-bit
input d. If s is active, the output is set to the most significant 32
bits of input d, otherwise the output is set to the bits between
ranks 47 and 16, inclusive, of the input d.

Solution:

1 module b u s s e l e c t (
2 i n pu t [6 3 : 0] d ,
3 i n pu t s ,
4 output [3 1 : 0] o
5) ;

7 a s s i g n o = s ? d [6 3 : 3 2] : d [4 7 : 1 6] ;
8 endmodule

© 2024 Opriţoiu Flavius. All Rights Reserved.

Verilog concatenate operator

The Verilog concatenate operator permits constructing busses.
Concatenation is constructed as a list of signals, separated by
commas, enclosed between curly brackets. The leftmost signal
occupy the most significant bit positions of the new bus and the
rightmost signal occupy the least significant ranks.

Exercise: Design a module for reversing the bit order of a 4-bit
value received at input.

Solution:

1 module r e v e r s e 4 b (
2 i n pu t [3 : 0] i ,
3 output [3 : 0] o
4) ;

6 a s s i g n o = { i [0] , i [1] , i [2] , i [3] } ;
7 endmodule

© 2024 Opriţoiu Flavius. All Rights Reserved.

Verilog arithmetic operators

Verilog provides the following binary arithmetic operators: +, -, *,
/, %, for the modulus operator and ** for exponentiation. The
unary arithmetic operators, + and -, are used for controlling the
sign of their operands.

Exercise: Construct an 8-bit binary adder with no carry input.

Solution:

1 module add 8b (
2 i n pu t [7 : 0] x ,
3 i n pu t [7 : 0] y ,
4 output [7 : 0] z ,
5 output co
6) ;

8 a s s i g n {co , z} = x + y ;
9 endmodule

A modulo-28 adder has the same implementation, except
eliminating the co output.
© 2024 Opriţoiu Flavius. All Rights Reserved.

Conditional operator

Verilog’s conditional operator has the following format:
expression ? expression true : expression false

Exercise: Design a device for incrementing a 5-bit, unsigned
integer, number at the input. If the number at the input is 31,
deliver it unchanged to the output.

Solution:

1 module i n c r emen t 5b (
2 i n pu t [4 : 0] i ,
3 output [4 : 0] o
4) ;

6 a s s i g n o = (i == 31) ? i : i + 1 ;
7 endmodule

inc_5b
i

5

o
5

Notă: The conditional operator implements the conditional
instruction (if <condition> then ...), just like the multiplexer.

© 2024 Opriţoiu Flavius. All Rights Reserved.

Verilog replication operator

The Verilog replication operator replicates an expression a number
of times, concatenating all copies into a bus. Operator’s format is
{r{e}}, replicating expression e a number of r times.

Exercise: Construct a module for sign extension of a signed, 8-bit
binary integer to 32-bits.

Solution:

1 module s i g n e x t e n d (
2 i n pu t [7 : 0] i ,
3 output [3 1 : 0] o
4) ;

6 a s s i g n o = {{24{ i [7] } } , i } ;
7 endmodule

In computer systems, a number’s sign is represented in the most
significant position (the leftmost bit). Sign extension, in Two’s
Complement (C2), copies sign bit the required number of times.
© 2024 Opriţoiu Flavius. All Rights Reserved.

Verilog bitwise and reduction operators

Verilog’s bitwise operators have vectors operands. The following
table presents their symbols, functions and arity.

Symbol Function Arity

∼ bitwise complementation unary
& bitwise AND binary
| bitwise OR binary
ˆ bitwise EXOR binary
ˆ∼ bitwise XNOR binary

The reduction operators have a single vector operand. They
generate a single-bit output obtained by applying the respective
operator over all bits of the vector. The reduction operators are &,
|, ∼& for NAND reduction, ∼| for NOR reduction, ̂ and ∼̂ or̂∼ for XNOR reduction.

© 2024 Opriţoiu Flavius. All Rights Reserved.

Verilog bitwise and reduction operators (contd.)
Exercise: Construct a module implementing function
o(x) = max(0, x) for signed numbers on 8 bits.

Solution:

1 module max (
2 i n pu t [7 : 0] x ,
3 output [7 : 0] o
4) ;
5 a s s i g n o = {8{˜ x [7] } } & x ;
6 endmodule

Exercise: Construct a module for calculating the even parity bit of
an 7-bit signal (even parity bit is the modulo-2 sum of all bits).

Solution:

1 module p a r i t y (
2 i n pu t [6 : 0] i ,
3 output p
4) ;
5 a s s i g n o = ˆ i ;
6 endmodule
© 2024 Opriţoiu Flavius. All Rights Reserved.

Other Verilog operators

Verilog relational operators: <, >, <=, >=, == (for equality), != (for
inequality), === (for case equality) and !== (for case inequality).
Case equality and inequality operators handle Verilog four-valued
signals. In Verilog, besides having a values of 0 or 1, a signal can
be undefined, marked with symbol x or in high impedance, marked
with symbol z. For signals A = 1x01 and B = 1x01, A === B
evaluates to true, while A == B evaluates to false.

Verilog logic operators: &&, || and ! (for logic negation).

Verilog shift operators are: << (for left shifting), <<< (for
arithmetic left shifting of signed values), >> (for right shifting) and
>>> (for arithmetic right shifting of signed values). Relational and
logic operators return a one-bit value of either 1, for a true result,
or 0, for a false result.

© 2024 Opriţoiu Flavius. All Rights Reserved.

Verilog constants
Verilog constants’ format:
<bit width>’<radix specifier><value>

where

- bit width: decimal, positive integer representing the number
of bits allocated to the constant; optional

- radix specifier: can be b for binary, o for octal, d for
decimal and h for hexadecimal; optional, with decimal being
default

- value the constant’s value expressed in the specified radix

Some Verilog constant examples are presented in the table bellow:

Verilog Constant Stored as

3’b110 110
8’b0010 1101 00101101
5’d6 00110
10’h9e 0010011110

© 2024 Opriţoiu Flavius. All Rights Reserved.

References

[Stro05] L. Strozek. Verilog Tutorial - Edited for CS141. [Online].
Available: https://wiki.eecs.yorku.ca/course archive/2013-14/
F/3201/ media/verilog-tutorial harvard.pdf (Last accessed
20/07/2016).

© 2024 Opriţoiu Flavius. All Rights Reserved.

https://wiki.eecs.yorku.ca/course_archive/2013-14/F/3201/_media/verilog-tutorial_harvard.pdf
https://wiki.eecs.yorku.ca/course_archive/2013-14/F/3201/_media/verilog-tutorial_harvard.pdf

