
Verilog modeling using the always and initial

blocks

Opriţoiu Flavius
flavius.opritoiu@cs.upt.ro

October 9, 2024

Introduction

Objectives:

▶ Construct sequential synchronous designs using Verilog

Reading:

� Lukasz Strozek: ”Verilog Tutorial - Edited for CS141”,
Laboratory notes, [Stro05]

Verilog behavioural modeling supported by two structured
procedures:

- always, and

- initial

© 2024 Opriţoiu Flavius. All Rights Reserved.

always and initial blocks

The initial blocks are executed only once, at the start of the
simulation.

The execution of an always block is triggered by any of the events
specified in always block’s sensitivity list. The sensitivity list is
specified as: always @ (<sensitivity list>).

Transition of any signal from the sensitivity list triggers block’s
re-execution. If a signal is proceeded by a posedge or negedge
edge specifier, only the respective edge triggers block’s
re-execution. One cannot combine in the same sensitivity list
signals with and without edge specifiers. Events in the list are
separated by the or keyword or by comma. If the always or
initial block contains several statements, those are enclosed
between begin and end.

© 2024 Opriţoiu Flavius. All Rights Reserved.

Procedural assignments

Procedural assignments are issued inside always and initial

blocks and, unlike continuous assignments, are evaluated only
during execution of the block they resides in.

The left hand side of a procedural assignments can be:

- a signal declared with the reg type,

- an integer variable,

- a real variable,

- a time variable,

- a bit-select or part-select of the above, or

- a concatenation of the above

Important: A signal used as the left hand side of a procedural
assignment needs to be declared of reg type.

If the right hand side of a procedural assignment has fewer bits
than the left hand side, it will be extended with 0s in the msb.
© 2024 Opriţoiu Flavius. All Rights Reserved.

Procedural assignments (contd.)

Verilog uses two types of procedural assignments:

- blocking assignments, that use symbol =, having the following
form <left hand side> = <expression> and

- non-blocking assignments, that use symbol <=, having the
following form <left hand side> <= <expression>

Important: For combinational components, the always block uses
only blocking assignments!

Important: For sequential synchronous components, the always
block uses only non-blocking assignments!

© 2024 Opriţoiu Flavius. All Rights Reserved.

Procedural assignment use cases

Edge triggered sequential synchronous designs (flip-flop
components) are modeled by always blocks using only
non-blocking assignments. The sensitivity list includes the clock
signal (clk), preceded by an edge specifier, and, possibly, an
asynchronous reset signal, also preceded by an edge specifier.

Note: Throughout the practical activities of this class, the active
low signals will be marked with suffix b.

The code fragment bellow describes a D-type flip-flop with active
low reset, rst b:

1 a lways @ (posedge c l k , negedge r s t b) beg i n
2 i f (! r s t b) q <= 1 ’ d0 ;
3 e l s e q <= d ;
4 end

© 2024 Opriţoiu Flavius. All Rights Reserved.

Procedural assignment use cases (contd.)

Level triggered sequential designs (latch) are constructed using
always blocks containing only non-blocking assignments. The
sensitivity list contains the enable signal and, possible a reset
signal. No edge specifier is provided.

The code fragment bellow describes a T-type latch with active
high asynchronous reset, rst:

1 a lways @ (en , d , r s t) beg in
2 i f (r s t) q <= 1 ’ d0 ;
3 e l s e i f (en) q <= d ˆ q ;
4 end

© 2024 Opriţoiu Flavius. All Rights Reserved.

Procedural assignment use cases (contd.)

Combinational designs aside from the continuous assignments
(assign) can also be modeled using always blocks having only
blocking assignments. The sensitivity list include all signals whose
modification requires re-executing the always block. Typically,
these sensitivity list signals include all signals appearing in the right
hand side of assignments or in condition-type expressions inside the
block. Instead of adding all the required signals to the sensitivity
list, Verilog permits using the * symbol as sensitivity list.

The code fragment bellow describes a 1-bit selection multiplexer:

1 a lways @ (*) beg in
2 i f (s e l) o = d1 ;
3 e l s e o = d0 ;
4 end

© 2024 Opriţoiu Flavius. All Rights Reserved.

Conditional statement

The Verilog conditional statement has the following format:

if (<condition>)

<statement_true>;

else

<statement_false>;

The else branch can be omitted. The condition is evaluated
and if it is different than 0, statement true is executed, otherwise
statement else is executed if the else branch is present.

If more than one statement is to be executed on a branch, a
begin . . . end construct will enclose those statements.

© 2024 Opriţoiu Flavius. All Rights Reserved.

Parallel load register with reset control line

Parallel load register on 8 bits with asynchronous active low reset
(left side) and, respectively, with synchronous active high reset
(right side):

1 module r e g 8 a s y n c r s t b (
2 i npu t c l k ,
3 i n pu t r s t b ,
4 i n pu t [7 : 0] d ,
5 output r eg [7 : 0] q
6) ;

8 a lways @ (posedge c l k , negedge r s t b)
9 i f (! r s t b) q <= 8 ’ d0 ;

10 e l s e q <= d ;
11 endmodule

1 module r e g 8 s y n c r s t (
2 i n pu t c l k ,
3 i n pu t r s t ,
4 i n pu t [7 : 0] d ,
5 output r eg [7 : 0] q
6) ;

8 a lways @ (posedge c l k)
9 i f (r s t) q <= 8 ’ d0 ;

10 e l s e q <= d ;
11 endmodule

Important: for sequential synchronous components, the
synchronous inputs are not added to the sensitivity list, unlike the
asynchronous inputs.

Therby, in the left side , the rst b asynchronous input is included in
the sensitivity list whereas the rst synchronous input on the right is
not.
© 2024 Opriţoiu Flavius. All Rights Reserved.

The case statement

Multi-way decision mechanism matching a selector expression
against several branches and having the following format:
case (<expression>)

<case_value_1> : <statement_1>;

...

<case_value_n> : <statement_n>;

default : <statement_default>;

endcase

The expression is searched for and if a match is found, the
corresponding statement is executed. The search is performed in
order from case value 1 onwards. If the default clause is present
and no match occurred its statement will be executed.

If required, binary positions can also be specified not to influence
the matching process. These binary positions will use the ? symbol
in the binary expression of the respective case values.

© 2024 Opriţoiu Flavius. All Rights Reserved.

Two-to-four-lines decoder

Exercise: Implement a two-to-four-lines decoder with enable line
and active low outputs

Solution:
1 module dec 2x4 (
2 i n pu t [1 : 0] s ,
3 i n pu t e ,
4 output r eg [3 : 0] y
5) ;
6 a lways @ (*)
7 ca s e z ({ e , s })
8 3 ’ b100 : y = 4 ’ b1110 ;
9 3 ’ b101 : y = 4 ’ b1101 ;

10 3 ’ b110 : y = 4 ’ b1011 ;
11 3 ’ b111 : y = 4 ’ b0111 ;
12 3 ’ b0 ?? : y = 4 ’ b1111 ;
13 endcase
14 endmodule

d
e
c
_
2
x
4

e

s[1]

y[3]

y[2]

y[1]

y[0]

s[0]

The last case branch tests input e masking the value of the
selection lines by using don’t care symbols for them (3’b0??).
© 2024 Opriţoiu Flavius. All Rights Reserved.

Displaying simulation information

$display() writes information to the console, having the syntax:
$display("format", expr 1, ... , expr n);. In the format
string, the following format specifier are recognized:

▶ %b - binary values

▶ %c - characters, 8 bits per character

▶ %d - decimal values

▶ %e, %f and %g - real values

▶ %h - hexadecimal values

▶ %m - hierarchical module names

▶ %o - octal values

▶ %s - strings, 8 bits per character

▶ %t - simulation time provided by system task $time

▶ %u - unformatted data using two values (1 and 0)

▶ %z - unformatted data using four values (1, 0, z and x)

© 2024 Opriţoiu Flavius. All Rights Reserved.

Displaying simulation information (contd.)

$display() recognizes the following sequences in the format
string:

▶ \n - for new line

▶ \t - for tab character

▶ \\ - for backslash

▶ \" - for quote

▶ %% - for percent symbol

$monitor, with the same format as $display, prints formatted
information by writing them whenever any of its arguments
changed during simulation.

© 2024 Opriţoiu Flavius. All Rights Reserved.

Loop statements

Verilog provides 4 loop statements: forever, repeat, while and
for.

The forever construct has the format forever statement; and
executes the provided statement indefinitely. For this laboratory,
the statement will be used in testbenches for generating clock
signals, as in the code fragment bellow which constructs a 50%
duty cycle signal with a period of 100ns:

reg clk;

initial begin

clk = 1’d0;

forever #50 clk = ∼clk;
end

The statement is used in an initial procedural block, where the
clock signal is first initialized and then continuously complemented
every 50ns.
© 2024 Opriţoiu Flavius. All Rights Reserved.

Loop statements (contd.)

The repeat statement’s format is repeat (<number of times>)

statement; and it executes the statement for a fixed number of
times. We will use the repeat statement in testbenches. The
following code prints all number from 60 to 63 in decimal and
binary:

reg [5:0] n;

initial begin

n = 6’d60;

repeat (4) begin

$display("%d(10) = %b(2)", n, n);

n = n + 1;

end

end

© 2024 Opriţoiu Flavius. All Rights Reserved.

Loop statements (contd.)

The while construct has the format while (condition)

statement; and executes the provided statement for as long as
condition evaluates to true.

Similarly, the for construct has the format for (loop init;

loop condition; loop update) statement; and executes the
provided statement as long the loop condition remains true. The
construct has additional loop condition initialization and loop
update elements. The code fragment bellow prints all number from
90 to 99 in decimal and binary:

reg [6:0] n;

initial begin

for (n = ’d90; n < 100; n = n+1)

#50 $display("%d(10) = %b(2)", n, n);

end

© 2024 Opriţoiu Flavius. All Rights Reserved.

References

[Stro05] L. Strozek. Verilog Tutorial - Edited for CS141. [Online].
Available: https://wiki.eecs.yorku.ca/course archive/2013-14/
F/3201/ media/verilog-tutorial harvard.pdf (Last accessed
20/07/2016).

© 2024 Opriţoiu Flavius. All Rights Reserved.

https://wiki.eecs.yorku.ca/course_archive/2013-14/F/3201/_media/verilog-tutorial_harvard.pdf
https://wiki.eecs.yorku.ca/course_archive/2013-14/F/3201/_media/verilog-tutorial_harvard.pdf

