Verilog modeling using the always and initial blocks

Proposed problems

Opriţoiu Flavius flavius.opritoiu@cs.upt.ro

October 9, 2024

Design a Verilog module named msd, using always blocks, having one input i on 5 bits and one output o on 4 bits. Output o is the value of the most significant decimal digit in input i's unsigned number decimal representation. Example: $i=23 \rightarrow o=2$; $i=9 \rightarrow o=9$.

Note: For implementing this problem download source file msd.v and, respectively, script file run_msd.txt, only modifying the Verilog source file.

Construct a module named *div3*, having an input i, on 4 bits and an output o, on the minimum number of bits so that at the output to provide the quotient of dividing by 3 the unsigned number connected at the input i. Do not use the "/" Verilog division operator for this exercise and implement the module using an always block. Example: $i = 10 \rightarrow o = 3$; $i = 2 \rightarrow o = 0$.

Note: For implementing this problem download source file div3.v and, respectively, script file run_div3.txt, only modifying the Verilog source file.

Construct a device for counting the number of bits of 1 for the unsigned number connected at the input *i*. The module, named *cnt1s*, has an input *i*, on 6 bits and an output *o* on the minimum required number of bits. Build the module using always blocks.

Note: For implementing this problem download source file • cnt1s.v and, respectively, script file • run_cnt1s.txt, only modifying the Verilog source file.

Design a device named seq3b having an input i on 4 bits and an output o on a single bit. The output is active if the binary number connected at the input contains a sequence of 3 or more consecutive bits with the same value. Example: $i=14 \rightarrow o=1$; $i=9 \rightarrow o=0$.

Note: For implementing this problem download source file seq3b.v and, respectively, script file run_seq3b.txt, only modifying the Verilog source file.

Construct a module named mul5bcd having a 4-bit input i and two ouptuts d and u, both on 4 bits. At input i it receives a BCD digit (on 4 bits) and the module provides at the output the result of multiplying by 5, in BCD, the input digit: the output d represents the decimals' figure while the output u represents the units' figure of the result. Example: $i = 3(0011) \rightarrow d = 1(0001)$, u = 5(0101); $i = 9 \rightarrow d = 4(0100)$, u = 5(0101).

Note: For implementation download source file mul5bcd.v and, respectively, script file mul5bcd.txt, only modifying the Verilog source file.

Design module text2nibble, having input i on 8 bits and outputo on 4 bits. Input i receives one ASCII character. If the character is a decimal digit ('0' to '9'), provided at output the value of the digit, otherwise provide value 15.

ASCII char	ASCII char value (radix 16)	Output o
'0'	30 (00110000)	0
'1'	31 (00110001)	1
'2'	32	2
'3'	33	3
'4'	34	4
'5'	35	5
'6'	36	6
'7'	37	7
'8'	38	8
'9'	39 (00111001)	9

^{© 2024} Oprițoiu Flavius. All Rights Reserved.

Problem 6 (contd.)

Note: For implementation download source file <u>text2nibble.v</u> and, respectively, script file <u>run.text2nibble.txt</u>, only modifying the Verilog source file.

Build a register on 4 bits, named r4b. The register can perform a parallel load of the value on 4-bit input d into its content and it can also right-shift its content by 1 position, in which case the value of the most significant bit is provided at the 1-bit input sh_in . The register has 2 synchronous command inputs: command line Id — which activates the parallel loading of d and command line Sh — which triggers the right-shift. The register has a 4-bit output Sh0, representing its current content. For implementation modify the Verilog source file Oh1.

Note: The synchronous sequential devices, like the register above, will have an implicit input for the clock signal, *clk*, and an implicit asynchronous, active low, reset line, *rst_b*, unless otherwise stated.