
Combinational Circuits:

Multiplexers, Decoders,

Programmable Logic Devices

Lecture 5

Doru Todinca

Textbook

• This chapter is based on the book [RothKinney]:

Charles H. Roth, Larry L. Kinney, Fundamentals

of Logic Design, Sixth Edition, Cengage

Learning. 2010

• Figures, tables and text are taken from this

book, Unit 9, Multiplexers, Decoders, and

Programmable Logic Devices, if not stated

otherwise

• Figure numbers are those from [RothKinney]

Multiplexers

• A multiplexer (MUX) is a circuit that has

– Data inputs

– Control inputs

– An output

• The control inputs select which data inputs

to be connected to the output

• Figure 9.1 ([RothKinney]) show a 2:1 MUX

and its model as a switch

Multiplexers

Figure 9-1 A 2:1 MUX and switching analog [RothKinney]

Multiplexers

• When the control input A is 0, data input I0 will be

connected to the output Z (i.e. Z=I0)

• When A=1 we will have Z=I1.

• The logic equation for the 2:1 MUX is:

• Figure 9.2 shows 4:1, 8:1 and 2n:1 multiplexers and

their corresponding logic functions

– here 4, 8, 2n is the number of data inputs

• Of course, the number of control inputs for a 2n:1 MUX

must be n.

10' IAIAZ +=

Multiplexers

4:1 mux:

8:1 MUX:

2n:1 MUX:

Figure 9-2: Multiplexers: 4:1 mux, 8:1 mux, 2n:1 mux [RothKinney]

Logic diagram for the 8:1 MUX

Figure 9-3. Logic diagram for for 8:1 MUX [RothKinney]

Example of MUX application

• Multiplexers are frequently used to select

between two vectors (words) of data, like in

figure 9.4

• If A=0, the 4-bit vector z will take the values

x:

– x3 x2 x1 x0 will be connected to z3 z2 z1 z0

• If A=1, the vector z will take the values y:

– y3 will connect to z3, …, y0 will connect to z0.

Fig 9-5. The equivalent

representation with buses of fig

9-4 [RothKinney].

Fig 9-4. Four bit signals multiplexed together [RothKinney]

Buses

• Several logic signals that perform a common
function may be grouped together to form a bus.

• We represent a bus by a single, heavy line, with
the number of lines specified near the bus line
using a slash

• Figure 9.4 can be equivalently represented in
figure 9.5 using 4-bit buses

• Instead of using small letters for x, y and z, we
use capital letters for buses: X, Y, Z.

• X bus consists on signals x3, x2, x1 and x0, and
similar for Y and Z.

Enable inputs

• The multiplexers can have the outputs active
high (like in previous figures), or active low.

• If a signal is active low, we use an inverting
bubble on the circuit diagram, for that signal

• A multiplexer, like many other circuits, can have
additional enable inputs:
– When the enable input is active, the circuit (mux in

this case) works normally

– When the enable input has the inactive value, the
circuit’s outputs are all inactive: all 0 if they are active
high, all 1 if they are all active low, or all in high-
impedance (see later tri-state buffers).

Buffers

• The number of circuit inputs that can be driven

by a single output is limited

• If a circuit output must drive many inputs, we use

buffers to increase the driving capability

• In figure 9.6 the buffer (having the output F) is a

noninverting buffer: it does not perform any logic

function, i.e. its logic equation is F=C.

• It only increases the driving capability

Non-inverting buffer

Fig 9-6. Circuit with added buffers [RothKinney]

Three-state buffers

• Normally the outputs of two circuits cannot be connected
together

• If they were connected, and if one output is 0 and the
other output is 1
– the resulted voltage can be between LOW (logic 0) and HIGH

(logic 1)

– Hence, an undecided logic value

– Or even the circuits can be damaged

• Sometimes it is necessary to connect two outputs, under
the condition that they will not be simultaneously active

• The de-activation of an output can be realized using
three-state buffers

• Figure 9.7 shows a three-state buffer and its logical
equivalent

Three-state buffers

• Normally, there is a path between the output of a circuit and
– either GND (ground) => Vout=LOW, or VCC (+5V) => Vout=HIGH

• There are circuits (buffers) for which the paths to GND and
VCC are both blocked

• The output of the buffer is then in a high-impedance state,
called Hi-Z (the third state)

• No current can flow in the buffer’s output, the buffer has a very
high resistance (impedance)

• Logically, it is as if the output of the buffer is disconnected
(see figure 9.7)

• Three-state buffers are called also tri-state buffers

• The three state buffers have an enable input (B in figure 9.8)
that determines if the buffer functions as a normal buffer, or its
output is in Hi-Z

• The command (enable) and the output can be inverting or
non-inverting

Tri-state buffers

Fig 9-7. Tri-state

buffer [RothKinney]

Fig 8. Kinds of tri-

state buffers

[RothKinney]

Tri-state buffers and logic values

• In figure 9.9, the outputs of two buffers are connected
together, but only one of the two outputs is active at a
time, the other is in Hi-Z

• The circuit is logically equivalent to a 2:1 multiplexer

• For the circuit from figure 9.10, if both buffers are
enabled and if A=0 and C=1, then the value of the output
F will be unknown.

• We denote by X the unknown logical value

• A bus driven by tri-state buffers is called a tri-state bus

• The signals on the bus can have the values 0, 1, Z and
maybe X.

• Table 1 presents the resulting value of two signals S1
and S2 connected together and having these logic
values

Tri-state buffers for data selection

Fig 9-9. Data selection using three state buffers and the

logically equivalent circuit [RothKinney]

Logic values for buses signals

S2

X 0 1 Z

S1

X X X X X

0 X 0 X 0

1 X X 1 1

Z X 0 1 Z

Table 1: Logic values for bus

signals and the resulting value

when they are connected together

[RothKinney]

Fig 9-10. Circuit with tri-

state buffers [RothKinney]

Interpretation of table 1

• Normally we do not connect several circuit outputs together

• If there are situations when we have to, we use tri-state buffers and
an arbitration mechanism that ensures that only one output has a
logic value, and the other outputs are in Hi-Z

• If the arbitration mechanism fails, two active (i.e, not in Hi-Z) circuits
outputs can be connected together

• If they have different logic values (0 and 1), the resulted value is
unknown, denoted X
– in the table 0 and 1 give X

• Such an unknown value propagates, in the sense that, if a third
circuit output is also connected, the resulting value will remain X
– In table 1, X and any value give X

• From the table it seems ok to connect together two circuit outputs
that are both 0 or both 1

• In reality it is not ok, mainly due to transition periods (when circuits
change value)

• When no output is active, the resulted value will be Hi-Z

Table 1 and VHDL

• In VHDL we cannot connect two circuit outputs
together
– a signal cannot have more than one source (driver)

• If we need a signal with more than one driver, it
is declared in a special way and it has a
resolution function, that determines the resulted
value of the signal

• A resolution function works like described in
table 1:
– An X results from a 0 and a 1

– X is stronger than any other value

– 0 and 1 are stronger than Z

– The final result will be Z only if all values are Z

Bi-directional pins

• Circuit from figure 9.11 shows an example of
using tri-state buffers as a means to select one
of several (4 in this case) sources

• The circuit behaves like a 4:1 MUX

• Figure 9.12 shows another utilization of tri-state
buffers, for circuits with bi-directional pins
– A pin is used both for input and output, but not in the

same time

– Such situation appears e.g. for data buses at
microprocessors

– Multiplexing reduces the number of pins, which
reduces the cost of the circuit

Applications of tri-state circuits

Fig 9-11. Four

sources for

one operand

[RothKinney]

Fig 9-12. Circuit with

bi-directional input-

output pins

[RothKinney]

Fig 6-54

[Wakerly]: The

74x541 octal

tristate buffer:

(a) logical

diagram; (b)

logical symbol

The circuit is

used in

microprocessor

systems for

connecting

peripheral

devices (they

have 8 data

bits)

Inputs G1_L

and G2_L:

enable inputs.

Symbol on gates means

hysteresis: improved noise

immunity

Fig 6-56

[Wakerly]

74x245 octal

tri-state

transceiver: (a)

logic diagram;

(b) logic symbol

Bus transceiver: contains pairs of

tri-state buffers connected in

opposite directions: from A to B if

DIR=1, or from B to A if DIR=0

Buffers are enabled only if G_L=0

The circuit is used typically

between two busses.

Decoders and Encoders

• Figure 9.13 shows a 3-to-8 decoder
– The inputs represent a 3-bits binary number (between 0 and 7)

– The active output corresponds to the decimal representation of
the input number (e.g, if input is 101, output 5 will be active)

• Exactly one output will be active for each input
combination

• The decoder generates all the minterms for three input
variables

• In general a n-to-2n decoder generates all minterms for n
variables

• The outputs are given by the equations yi=mi (for non-
inverting outputs) and yi=mi’=Mi for inverting outputs

• Figure 9.14 shows a 4-to-10 decoder with inverted
outputs: logic diagram, block diagram and truth table

• The 4-to-10 decoders do not generate all possible
minterms

3-to 8 Decoder

Figure 13. A 3-to-8 decoder [RothKinney]

4-to-10 decoder

Fig 9-14. A 4-to10

decoder [RothKinney]

Generic 2-to-4 decoder with enable

Truth table for a 2-to-4 binary decoder

[Wakerly]

Generic 2-to-4 decoder with enable

Fig 6.32. A 2-to-4 decoder: (a) inputs and

outputs; (b) logic diagram [Wakerly]

Commercial 2-to-4 decoder

Truth table for ½ of the circuit 74x139 (dual 2-to-4

decoder) [Wakerly]. Input enable G_L is active low

Fig 6-34 [Wakerly]. 74x139 (a) logic diagram (b) inputs and outputs

74x138 3-to-8 decoder

Truth table for 74x138 decoder [Wakerly]

Fig 6-35 [Wakerly] Logic diagram for the 74x138 3-to-8 decoder

Implementation of logic functions

with decoders

The decoders can be used to

realize logic function, like in figure

9.15. The decoder implements the

functions f1 and f2:

Indeed, applying De Morgan,

we have:

Fig 9-15.

Implementing

logic functions

with decoders

[RothKinney]

Cascading decoders

Figure 6-38 [Wakerly]: Cascading

two 3-to-8 decoders to obtain a 4-

to-16 decoder:

The 3 less significant input lines

N2, N1, N0 are connected to the

data inputs of each decoder

The most significant input line N3

is used to select between the two

decoder circuits:

N3 selects first decoder when it is

low (0) => less significant input

lines DEC0_L – DEC7_L active

If N3=1 second decoder selected,

most significant output lines

DEC8_L to DEC15_L active

Fig 6-37 [Wakerly]:

designing a 5-to-32

decoder using 74x138

decoders

Most significant lines

N4, N3 are decoded by

a 2-to-4 decoder in

order to obtain selection

inputs for the 4 3-to-8

decoders that have lines

N2, N1, N0 as inputs

First decoder can be

replaced with a 3-to-8

decoder, using only

inputs lines B for N4

and A for N3, with input

C connected to GND.

Encoders

• An encoder performs the inverse function of a decoder.

• Figure 9.16 shows an 8-to-3 priority encoder and its truth
table.

• If only one input yi is active (i.e. it is 1) and the other
inputs are 0, then the abc outputs represent the binary
number i.

• If more than one yi are 1 at the same time, then the
output will be defined using a priority scheme, e.g. the
priority increases from y0 to y7 (highest input determine
the output)
– If y7 is active, the others input do not care and so on.

– Here X means don’t care, not unknown value, the notation can
be confusing !

• Output d is 1 if any input is 1 (active), otherwise it is 0.

Priority encoders

Fig 9.16. Priority encoder with truth table. [RothKinney]

Priority encoders

• A naïve implementation:

– From the table from fig 9.16 it follows that:

• a = y4 + y5 + y6 + y7

• b = y2 + y3+ y6 + y7

• c = y1 + y3 + y5 + y7

• d = y0 + y1 + y2 + y3 + y4 + y5 + y6 + y7

– But, if y2=1 and y4=1 in the same time, the output of

the decoder will be abc = 110, which corresponds to

y6 !!!

– The problem was that we did not prioritize between

the inputs y0 , …, y7 when more than one is active

Priority encoders

• The correct solution: we have to take into account the

priorities of the inputs

• In this case, the priority increases from y0 to y7

• We define eight intermediate variables, H0 to H7, such

that Hi is 1 if and only if yi is the highest priority 1 input

[Wakerly]:

– H7 = y7

– H6 = y6·y7’

– H5 = y5 ·y6’·y7’

– …

– H0 = y0 ·y1’· y2’ ·y3’·y4’·y5’·y6’·y7’

Priority encoders

• Now the equations for a, b, c and d

become:

– a = H4 + H5 + H6 + H7

– b = H2 + H3 + H6 + H7

– c = H1 + H3 + H5 + H7

– d = H0 + H1 + H2 + H3 + H4 + H5 + H6 + H7

Priority encoders

Fig 6-47 [Wakerly]: Logic

symbol for a generic 8-

input priority encoder

Fig 6-48 [Wakerly]: Logic

symbol for the 74x148 8-

input priority encoder

Truth table for 74x148 priority

encoder

Table 6-27

[Wakerly]

Truth table

for 74x148

74x148 priority encoder

• The output line GS_L (group
select, or “got something”) is
active when at least one input
is active

• Output EO (EO_L) is active
when no input line is active

• EO is used for cascading
priority encoders: it will be
connected to the EI_L input of
the next priority encoder (the
less significant one)

• Next figure shows the main
application of priority
encoders: there are N=2n

requestors and the outputs of
the encoder indicates which
requestor is active at any time

Fig 6-45 [Wakerly]: A

system with requestor

and the request encoder

Commercial multiplexers.

Applications of multiplexers and

demultiplexers

• Commercial multiplexers

• Expanding multiplexers

• Multiplexers, demultiplexers and busses

• Using Shannon expansion theorem for

designing with multiplexers

Fig 6-60

[Wakerly]: The

74x151 8:1

multiplexer. (a)

logic diagram

(b) Logic symbol

The output

appears both

active-1 (Y) and

active-0 (Y_L)

EN_L: enable

input

Truth table for 74x151 MUX

Table 5-34 [Wakerly]. Truth

table for 8-input, 1-bit

multiplexer

74x157 MUX

Table 5-35 [Wakerly]: truth table for a 74x157 2-input, 4-bit MUX

Figure on next slide: Fig 6-64 from [Wakerly]: 74x157 2-input 4-bit

multiplexer: (a) logic diagram; (b) logic symbol

74x151 contains 4 2:1 MUXes

Expanding multiplexers

• If we want to make a larger MUX from the
available MUXes and decoders

• In the next figure (figure 6-62 from [Wakerly]):
Combining 74x151s to make a 32-to-1
multiplexer) 3 of the selection lines are common
(XA0 to XA2), while the most significant
selections line are inputs to the decoder

• The outputs of the decoder are connected to the
enable inputs of the MUXes in order to select
them

• The outputs of the 4 MUXes are connected by a
NAND gate (from a 74x20 IC)

Fig 6-52

[Wakerly]:

combining

74x151s to

make a 32-to-1

multiplexer

Multiplexers, demultiplexers and

buses
• A demultiplexer (DEMUX) performs the opposite function

of a multiplexer:
– Has one data input

– Has n selection inputs

– And 2n outputs

– The input will be connected to the output who’s number is given
by the binary number that represents the selection inputs

• A MUX can be used to select 1-out-of-n sources of data
and transmit it on a bus

• At the other end of the bus a DEMUX can be used to
route the bus data to one of the destinations

• A demultiplexer can be implemented with a decoder (e.g.
with a 74x139 2-to-4 decoder, or with a 74x138 3-to-8
decoder)

MUX-DEMUX

Figure 6-64

[Wakerly] A

mux driving a

bus and a

demultiplexer

receiving the

bus: (a)

switch

equivalent; (b)

symbols

Demux implemented with a

decoder

Fig 5-67 [Wakerly], third edition: Using a 2-to-4 binary decoder as

a 1-to-4 demultiplexer (a) generic decoder; (b) 74x139

The input data is connected to the enable input of the decoder; the

selection inputs of the demux are connected to the selection

inputs of the decoder.

Using Shannon expansion theorem

for designing with multiplexers

• f (x1, x2, . . . , xi-1, xi, xi +1, . . . , xn)=

=xi’·f (x1, x2, . . . , xi-1, 0, xi+1, . . . , xn) +

xi · f(x1, x2, . . . , xi-1, 1, xi+1, . . . , xn)=

= xi’ · f0 + xi · f1
This means that we can implement an n-variable function

with two (n-1) variable functions and a 2:1 mux

In general, we can implement (realize) any n-variable
function (n>4) with 2(n-4) 4-bit function generators and
one 2(n-4) -to-1 mux.

This is very useful in FPGAs, where the internal structure
contains many MUXes and 4-bit function generators
(FGs)

Example of expansion theorem

• Example for a 6-variable function

G(a,b,c,d,e,f)=a’·G(0,b,c,d,e,f) + a·

G(1,b,c,d,e,f) = a’ · G0+a·G1;

• G0=b’G·(0,0,c,d,e,f) + b·G(0,1,c,d,e,f) = b’

·G00+b·G01

• G1=b’G(1,0,c,d,e,f) + b·G(1,1,c,d,e,f)= b’G10

+ b·G11

• An implementation is shown in the next figure

Designing with MUXes

Fig 9-36 [RothKinney]:

Realization of 5- and

6-variable function with

function generators

(FGs) and MUXes.

In fig 9-36 (b) the 4:1

MUX is implemented

as a tree of 2:1 MUXes

Read-Only Memories

• A read-only memory (ROM) is an array of semiconductor
devices that are interconnected to store an array of
binary data

• Once stored in the ROM, the binary data can be read,
but cannot be modified (under normal operating
conditions)

• A ROM implements (i.e. stores) the truth table of a
function (or of several functions)

• Figure 9.17 shows a ROM with 3 input lines and 4 output
lines

• Each output pattern stored in the ROM is called a word

• Since the ROM has 3 input lines, it means that it can
store 23=8 words.

Fig 9-17. [RothKinney] A 8-word x 4 bit ROM

• In general a ROM with n input lines and m output lines
can store 2n words, each word having m bits. (fig 9.18)

• One input lines combination serve as an address to
select one of the 2n words:
– When the input combination is applied to the inputs, the outputs

will contain the word stored at that address

– In fig 9-18, when 00...11 is applied to the input (the address
lines) of the ROM, the output will be 110...010

• A 2n x m ROM can realize m functions of n variables

• Typical sizes of ROMs: from 32 words x 4bits to 512 K
words x 8 bits and even 1024 K words x 8 bits (1 Mega
word of 8 bits)

• For memories 1 K = 210 = 1024 !! (10 address lines)

• With 20 address lines we can address 220 = 1024x1024
= 1 Mega words of data

Fig 9-18. [RothKinney] ROM with n inputs and m outputs

Basic ROM structure

Fig 9-19 [RothKinney]

Basic ROM structure

A ROM consists of a

decoder and a memory

array (see fig 9-19)

When a pattern of 0s

and 1s is applied to the

decoder inputs, exactly

one of the decoder’s

outputs will be active.

The active output line of

the decoder will select a

word from the memory

array.

The selected word will

appear at the outputs of

the ROM.

ROM example 1
• Figure 9-20 shows a possible internal structure of the

ROM from fig 9-17.

• The decoder generates the 8 minterms that can be
obtained with 3 input variables

• The memory array forms the four output functions F0, F1,
F2, F3 by ORing together selected minterms.
– F0 is the sum of minterms 0,1,4 and 6

– F1 is the sum of minterms 2,3,4,6 and 7, etc

• A switcing element is placed at the intersection of a word
line and an output line if the corresponding minterm has
to be included in the output function
– If the minterm will not be included in the output function the

switching element remains unconnected (it will be omitted)

• If the minterm is 1, then the word line is 1 and the output
line connected to it will be also 1

Example 1

• If none of the word lines connected to an
output line is 1, then the pull-down
resistors will cause the output to be 0

• In this way the switching elements form an
OR array: an OR gate for each of the
output lines

• The minterms that form a function are
connected to the output line that
corresponds to that function.

Example 1

Example 1

F0=A’·B’·C’+A’·B’·C+A·B’·C’+A·B·C’=A’·B’·(C+C’) + A·C’·(B+B’)=A’·B’+A·C’

Functions implemented by the

ROM from fig 9-20.

The functions implemented by the

ROM from figure 9-20 are given

aside.

What is important is the minterm list

representation of the functions, not

their minimized form.

Figure 9-21 gives the equivalent OR

gate for function F0

Bellow we have the algebraic

minimization of F0:

Another example: code converter

• Figure 9-22 shows the truth table and the logic circuit for a
code converter that converts a 4-bit binary number to the
ASCII representation of its hexadecimal digit

• ASCII: American Standard Code for Information
Interchange: a 7-bits code for representing digits, letters
and other characters.
– The character A is represented by the combination 4116, or 100

0001 in binary, etc

• From the table we can see that A5=A4 and A6=A4’ => the
ROM will have 4 input lines and 5 output lines (16 words by
5 bits)

• The switching elements at the intersections of rows and
columns are marked by X’s:
– An X indicates that the switching element is presented and

connected

– No X means that the corresponding element is absent or not
connected

Code converter

Code converter

Types of ROMs

• The most common types of ROMs are:
– Mask-programmable ROMs

– Programmable ROMs (PROMs)

– Electrically erasable ROMs

• Mask programmable ROMs:
– They are programmed at the time of manufacture

– Data is permanently stored and cannot be changed

– The presence or omission of the switching elements is realized
with a mask

– The realization of a mask is expensive =>

– This type of ROM is economically feasible only for a large
quantity

• PROMs: can be programmed by the user, but only once

EEPROMs

• Can be erased and re-programmed

• They use a special charge-storage mechanism to enable
or disable the switching elements in the memory array

• They are programmed with a PROM programmer

• Data stored is permanent, until erase

• The erasing and reprogramming cycles are limited (100-
1000 times)

• Programming voltages are higher than in normal
operation

• Also, programming times are much higher than their
normal delays)

• Flash memories are similar to EEPROMs, but they use a
different charge-storage mechanism
– Also, have built-in programming and erase capabilities => don’t

need a special programmer

Programmable Logic Devices

• Types of Programmable Logic Devices (PLDs):

– Programmable Logic Arrays (PLA)

– Programmable Array Logic (PAL)

– Complex Programmable Logic Devices (CPLD)

– Field Programmable Gate Arrays (FPGA)

• CPLDs and FPGAs contain also sequential

elements

– They are used as target circuits for high-level

synthesis: a description in a HDL like VHDL or Verilog

is synthesized on a CPLD or FPGA.

PLA
• A PLA with n inputs and m outputs can realize m

functions of n variables (like a ROM !)

• The internal organization of a PLA is different from that
of a ROM (see fig 9-24):
– The decoder is replaced by an AND array which realizes

selected product terms of the input variables

– The OR array ORs together the product terms in order to form
the output functions

• A PLA implements a sum-of-products expression, while a
ROM implements a truth table.

• The expressions implemented in a PLA are not
necessarily minterms, as they are for ROMs, but rather
minimized sum-of-products

• When the number of input variables is large, but the
number of product terms is not very large, a PLA is more
economical than a ROM.

PLA structure

Fig 9-24 [RothKinney]: PLA structure.

PLA example 1

• PLA from fig 9-25 implements the same logic functions
like the ROM from fig 9-20.

• While at ROM we used directly minterms, for PLA we
use the minimized functions.

• Product terms are formed in the AND array by
connecting switching elements at the appropriate points
in the array.
– For example, to form A’·B’, switching elements connect the first

word line with the A’ and B’ lines

• In the OR array, switching elements are connected to
select the product terms needed for the output functions
– For example, for F0=A’·B’ +A·C’, switching elements connect

A’·B’ and A·C’ lines with F0 line.

• PLA connections are equivalent with AND-OR array from
fig 9-26.

Example 1 PLA

Fig 9-25 [RothKinney]: PLA with three inputs, five product terms, and four outputs

Example 1 PLA

Fig 9-26 [RothKinney]: AND-OR array equivalent to Figure 9-25.

Example 1 PLA

Table 9-1

[RothKinney]:

PLA table for

Figure 9-25.

The content of a PLA can be specified by a PLA table.

The inputs indicate the product terms: symbols 0, 1 and – indicate if a variable is

complemented, un-complemented, or not present in the corresponding product

term.

The outputs indicate which product terms appears in the output functions: 1

indicate that the product term is present in the output function, 0 that it is not

present.

Example 2

• In example 2 we implement

equations (7-23b) from

[RothKinney], shown

below:

• f1=a’·b·d+a·b·d+a·b’·c’+b’·c

• f2=c+a’·b·d

• f3=b·c+a·b’·c’+a·b·d

• The PLA table is in fig 9-27

(a).

• The PLA structure is

given in Fig 9-27 (b).

• A dot at the intersection

of a word line and an

input or output line

indicates the presence of

a switching element in the

array

Fig 9-27

[RothKinney]

PAL

Programmable Array Logic (PALs)

are special cases of PLAs in which

the AND array is programmable

and the OR array is fixed.

The PALs are less expensive than

PLAs.

Their functions are minimized

independently of each other, since

the AND terms cannot be shared

between several OR gates.

Fig 9-28 shows a PLA segment (a)

unprogrammed and (b)

programmed.

The symbol from

above represents an

input buffer which is

logically equivalent

to:

Connections to the AND gate in a PAL are

represented by X’s, as shown [RothKinney]:

Fig 9-28

[RothKinney]:

PAL segment.

Fig 9-29

[RothKinney]:

Implementation of

a full-adder using

a PAL.

Equations of the

full adder are

given on the right

side:

Exclusive-or Gates

Truth table for XOR and XNOR functions

[Wakerly]

The output of a exclusive-

OR (XOR) gate is 1 only

when only one of its

inputs is 1, and 0

otherwise

XNOR gate produces the

negated function of an

XOR gate

XNOR function it is also

called coincidence

because it is 1 when the

inputs are equal

Exclusive-OR gates

Fig 6-69 [Wakerly]: Equivalent symbols for (a) XOR; (b) XNOR

The most common are the leftmost symbols

Exclusive-OR gates

Figure 6-68

[Wakerly]:

Multigate

designs for the

2-input XOR

function: (a)

AND-OR; (b)

three-level

NAND

XOR gates

can be used

in parity

circuits, for

determining

the odd -

parity of a

number of

bits: the

output will

be 1 if the

number of 1

bits is odd

Fig 6-70 [Wakerly]: Cascanding XOR gates: (a) daisy-chain (b) tree structure

Parity circuits

Active levels

Table 5-1

[Wakerly]:

different naming

conventions. We

have used the

convention from

the last line of the

table.

At circuits, active

low inputs and

outputs are

represented with

an inverting

bubble.

Active levels are the level on which signals are

“doing their things” [Wakerly].

