Combinational Circuits:
Multiplexers, Decoders,
Programmable Logic Devices

Lecture 5
Doru Todinca

Textbook

* This chapter is based on the book [RothKinney]:
Charles H. Roth, Larry L. Kinney, Fundamentals
of Logic Design, Sixth Edition, Cengage

_earning. 2010

* Figures, tables and text are taken from this

nook, Unit 9, Multiplexers, Decoders, and

Programmable Logic Devices, if not stated
otherwise

* Figure numbers are those from [RothKinney]

Multiplexers

« A multiplexer (MUX) Is a circult that has
— Data inputs
— Control inputs
— An output

* The control inputs select which data inputs
to be connected to the output

* Figure 9.1 ([RothKinney]) show a 2:1 MUX
and 1ts model as a switch

Multiplexers

FIGURE 9-1
2-to-1 Multiplexer " e
and Switch Analog i
—e I
|
|
|

Figure 9-1 A 2:1 MUX and switching analog [RothKinney]

Multiplexers

When the control input Ais O, data input I, will be
connected to the output Z (i.e. Z=l,)

When A=1 we will have Z=I,.
The logic equation for the 2:1 MUX is:

L=Al.+A-l

Figure 9.2 shows 4:1, 8:1 and 2":1 multiplexers and
their corresponding logic functions
— here 4, 8, 2" is the number of data inputs

Of course, the number of control inputs for a 2":1 MUX
must be n.

Multiplexers

FIGURE 9-2 ___h"""x,,___‘
Multiplexers | — |
|-|I|) — 2 n
[—— = tio-1
J
[,—» MUX
4:1 mux: g
Iz ——=y
Zzﬂ.‘Bfl"n_flJBl"[+ABJI3+ABI3 [—h‘m A COntro
inputs
1 B i 2=—1
201 MUX: Z= X mid,

k=0
8:1 MUX: Z=A'B'C'I,+ A'B'CI, + A'BC'I, + A'BCL.
+ AB'C'I, + AB'CI, + ABC'I, + ABCI,

Figure 9-2: Multiplexers: 4:1 mux, 8:1 mux, 2™.1 mux [RothKinney]

Logic diagram for the 8:1 MUX

FIGURE =] 4."1{! a'b'cly a’bec'l, a'bely abe'ly ab'cls abc'i, a b ool
Lﬂglcﬂlagramfor Ll L] I|I| I||I I|I| I|I| |I|| L 111

= e % 5

Figure 9-3. Logic diagram for for 8:1 MUX [RothKinney]

Example of MUX application

* Multiplexers are frequently used to select
between two vectors (words) of data, like In

figure 9.4
* If A=0, the 4-bit vector z will take the values
X.
— X3 X5 X1 X WIill be connected to z;z, z, z,
 If A=1, the vector z will take the valuesy:
— Yy, will connect to z,, ..., y, will connect to z,.

Quad Multiplexer
Used to Select Data
/ e—
[N [N [N [\

Fig 9-4. Four bit signals multiplexed together [RothKinney]

Quad Multiplexer
with Bus Inputs and
Output

Fig 9-5. The equivalent
representation with buses of fig
9-4 [RothKinney].

Buses

Several logic signals that perform a common
function may be grouped together to form a bus.

We represent a bus by a single, heavy line, with
the number of lines specified near the bus line

using a slash

Figure 9.4 can be equivalently represented in

figure 9.5 using 4-bit
Instead of using smal
use capital letters for

huSses
letters for x, y and z, we

puses: X, Y, Z.

X bus consists on signals X3, X, X; and X,, and

similar for Y and Z.

* The multi
nigh (like
 If a sigha

Enable inputs

nlexers can have the outputs active
In previous figures), or active low.

IS active low, we use an inverting

oubble on the circuit diagram, for that signal

« A multiplexer, like many other circuits, can have
additional enable inputs:

— When the enable input is active, the circuit (mux In
this case) works normally

— When the enable input has the inactive value, the
circuit’s outputs are all inactive: all O if they are active

high, all

1 if they are all active low, or all in high-

Impedance (see later tri-state buffers).

Buffers

The number of circuit inputs that can be driven
oy a single output is limited

f a circuit output must drive many inputs, we use
ouffers to increase the driving capabillity

n figure 9.6 the buffer (having the output F) is a
noninverting buffer: it does not perform any logic
function, I.e. its logic equation is F=C.

It only increases the driving capability

Non-inverting buffer

Gate Circuit with | >_D_<, _
Added Buffer gy

J-000

Fig 9-6. Circuit with added buffers [RothKinney]

Three-state buffers

Normally the outputs of two circuits cannot be connected
together

If they were connected, and if one output is 0 and the

other output is 1

— the resulted voltage can be between LOW (logic 0) and HIGH
(logic 1)

— Hence, an undecided logic value

— Or even the circuits can be damaged

Sometimes it is necessary to connect two outputs, under
the condition that they will not be simultaneously active

The de-activation of an output can be realized using
three-state buffers

Figure 9.7 shows a three-state buffer and its logical
equivalent

Three-state buffers

Normally, there is a path between the output of a circuit and
— either GND (ground) =>V,_,=LOW, or V. (+5V) => V_ =HIGH

There are circuits (buffers) for which the paths to GND and
V. are both blocked

The output of the buffer is then in a high-impedance state,
called Hi-Z (the third state)

No current can flow in the buffer’s output, the buffer has a very
high resistance (impedance)

Logically, it is as if the output of the buffer is disconnected
(see figure 9.7)

Three-state buffers are called also tri-state buffers

The three state buffers have an enable input (B in figure 9.8)
that determines if the buffer functions as a normal buffer, or its
output is in Hi-Z

The command (enable) and the output can be inverting or
non-inverting

Tri-state buffers

Fig 9-7. Tri-state

. FIGURE 9-7
buffer [RothKinney] Three-5tate Buffer I
1 ! — i AD—C/X o—
Fig 8. Kinds of tri-
state buffers
[RothKinney]
FIGURE 9-8 J ; '
Four Kinds of]
Three-State Buffers J) . J/: o % > L

- =0 O|m
o =0|>»
- ONN|M
- 00|
o =0
© =NN|A
- w00 |m
- O —=0|b
NN-—=O|Mn
- 0 O |m

(a) (b) (c) (d)

NNO =M

Tri-state buffers and logic values

In figure 9.9, the outputs of two buffers are connected
together, but only one of the two outputs is active at a
time, the other is in Hi-Z

The circuit is logically equivalent to a 2:1 multiplexer

For the circuit from figure 9.10, if both buffers are
enabled and if A=0 and C=1, then the value of the output
F will be unknown.

We denote by X the unknown logical value
A bus driven by tri-state buffers is called a tri-state bus

The signals on the bus can have the values 0O, 1, Z and
maybe X.

Table 1 presents the resulting value of two signals S1
and S2 connected together and having these logic
values

Tri-state buffers for data selection

Data Seledion 4>
Using Three-State | 2-
Buffers

Fig 9-9. Data selection using three state buffers and the
logically equivalent circuit [RothKinney]

Logic values for buses signals

Circuit with Two
Three-State Buffers

Fig 9-10. Circuit with tri-
state buffers [RothKinney]

—

S2
X110 [1]Z
X[X | X]| X | X
O X|]0 | X |0
S1| 1 | X | X|1]1
Z | X|0|1]|Z

Table 1: Logic values for bus
signals and the resulting value
when they are connected together
[RothKinney]

Interpretation of table 1

Normally we do not connect several circuit outputs together

If there are situations when we have to, we use tri-state buffers and
an arbitration mechanism that ensures that only one output has a
logic value, and the other outputs are in Hi-Z

If the arbitration mechanism fails, two active (i.e, not in Hi-Z) circuits
outputs can be connected together
If they have different logic values (0 and 1), the resulted value is
unknown, denoted X

— inthe table 0 and 1 give X

Such an unknown value propagates, in the sense that, if a third
circuit output is also connected, the resulting value will remain X

— Intable 1, X and any value give X

From the table it seems ok to connect together two circuit outputs
that are both 0 or both 1

In reality it is not ok, mainly due to transition periods (when circuits
change value)

When no output is active, the resulted value will be Hi-Z

Table 1 and VHDL

* In VHDL we cannot connect two circuit outputs
together
— a signal cannot have more than one source (driver)

 If we need a signal with more than one driver, it

IS declared in a special way and it has a
resolution function, that determines the resulted

value of the signal

« Aresolution function works like described In
table 1.
— An XresultsfromaOandal
— X is stronger than any other value
— 0 and 1 are stronger than Z
— The final result will be Z only if all values are Z

Bi-directional pins

 Circuit from figure 9.11 shows an example of
using tri-state buffers as a means to select one
of several (4 in this case) sources

 The circuit behaves like a 4:1 MUX

* Figure 9.12 shows another utilization of tri-state
buffers, for circuits with bi-directional pins

— A pin is used both for input and output, but not in the
same time

— Such situation appears e.g. for data buses at
Mmicroprocessors

— Multiplexing reduces the number of pins, which
reduces the cost of the circuit

Applications of tri-state circuits

Fig 9-11. Four
sources for 4-Bit Adder with —— _
one operand Four Sources for .

[RothKinney] One Operand | jk | |

Fig 9-12. Circuit with A Cirew

bi-directional input- wl?ﬁ%'f‘éﬁe fi'lgﬂf 4|£——-«—-—|:|
output pins Input -Output Pin

[RothKinney]

Fig 6-54
[Wakerly]: The
74x541 octal
tristate buffer:
(a) logical
diagram; (b)
logical symbol

The circuit is
used in
microprocessor
systems for
connecting
peripheral
devices (they
have 8 data
bits)

Inputs G1_L
and G2_L.:
enable inputs.

74x541

ol 61
G2

-
©

A1
A2
A3
A4
A5
A6
A7
A8

(b)

Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8

18
17
16
15
14
13
12
11

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Symbol on gates means

(@)

hysteresis: improved noise

immunity

A1

A2

A3

A4

A5

A6

A7

A8

(18)

Q)

(17)

(4)

(16)

©)

(15)

(6)

(14)

(7)

(13)

(8)

(12)

(9)

(11)

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

(19)

DIR —

¥
00

Bus transceiver. contains pairs of
B6 tri-state buffers connected in

opposite directions: from A to B if

DIR=1, or from B to A if DIR=0

g

7) (13)

A6

é] Y — [Wakerly]
—olG
A2 @ { i 7 B2 1] DIR 74X245 OCtaI
-~] tri-state
% —|%2 B— transceiver: (a)
1 —4laz B3 Rty
A — H/ @ g3 —ZA4 54% |OgIC dlagram;
—1*® ®r— (b)logic symbol
% b _clar el
A4 5) /}E (15) B4 9] A8 B8 BN
(b)
‘é
A5 —2 H/((149 pe
%
H/

g

®) (12)

A7 B7

Buffers are enabled only if G_L=0

©) 1)

B The circuit is used typically
@) between two busses.

A8

A A4
i

Decoders and Encoders

Figure 9.13 shows a 3-t0-8 decoder

— The inputs represent a 3-bits binary number (between 0 and 7)

— The active output corresponds to the decimal representation of
the input number (e.qg, if input is 101, output 5 will be active)

Exactly one output will be active for each input

combination

The decoder generates all the minterms for three input
variables

In general a n-to-2" decoder generates all minterms for n
variables

The outputs are given by the equations y,=m; (for non-
Inverting outputs) and y,=m;=M, for inverting outputs
Figure 9.14 shows a 4-to-10 decoder with inverted
outputs: logic diagram, block diagram and truth table

The 4-t0-10 decoders do not generate all possible
minterms

3-to 8 Decoder

FIGURE 9-13

FISURE S | syzate dbC | myinynyyy
-to-8 Line e 000 10000000
Decoder _F::z:; 001 01000000
. Tl 010 | 00100000
N -‘:il'-n{:"ﬁ —= V;=a b 011 00010000
. decoder — Vo= ab’c’ 100 | 00001000
e 101 00000100
T 1170 | 00000010
— Vg = abe 111 0000000 1

—= ¥y = abe

Figure 13. A 3-t0-8 decoder [RothKinney]

4-t0-10 decoder

|7 = v ¥ /™ ¥ ™ ™ /= [¥ ™ ¥ &= = 5=
=t DD 7= = = = = = ¥ =] T 7= = = = = ﬂ
wl_lf. IIIIIII) 7= = = g e e = e e
D_r_.-._ IIIII 3 7= = e e g g g e e g — -
— W O X
n.ﬂlﬂu_-.l_..l_..l_-.lnu 11111111111 m ..q-h
rm_]_:_lllnu IIIIIIIIIIII ”m 4._m
En-r..__-.l_..lnu 1111111111111 = AR
Ol D === == r—r— r—r— — r— .m_ .
i 4r
0|~ — — — r— — — — — — — Y — — 1e
—
] _d
5 o ©
Ao~~~ o000 —0O — H%
mﬂﬂﬂﬂﬂ1111ﬂﬂﬂﬂ1111
= d &
- E 5
oo O
E_..I._H
— O
) g+
L =
L=
i g
£ =]
L & o —E
co - Bl
A U’: m ”—lm
Gl . p—¢ 8
o —|d = £
~ =
! —|m = Trmrgm
il]
D T pf e
...mT
B &
w .-.mqr

Generic 2-t0-4 decoder with enable

Table 5-4

Inputs Outputs

Truth table for a 2-to-4

binary decoder. EN 11 10 Y3 Y2 Y1 YO
0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

Truth table for a 2-to-4 binary decoder
[Wakerly]

Generic 2-t0-4 decoder with enable

10" 10 1" 11 EN
10 >c> '
YO
2-to4 _)— Y1
decoder I _‘,_DC

— 10 YO |—
— Y1 |— } Y2

Y2 |—

— EN Y3 |—
BE

EN

(a) (b)

Fig 6.32. A 2-to-4 decoder: (a) inputs and
outputs; (b) logic diagram [Wakerly]

Commercial 2-to-4 decoder

Table 5-6

Inputs Outputs
Truth table for one-

half ofa 74x139dual G_L B A Y3L Y2L Y1L YOL

2-to-4 decoder.] < n 1 1 1)
0 0 0 1 1 1 0
0 0 1 1 1 0 1
0 1 0 1 0 1 1
0 1 1 0 1 1 1

Truth table for % of the circuit 74x139 (dual 2-to-4
decoder) [Wakerly]. Input enable G_L is active low

1G_L

2
1A @)

3
1B (©)

(@

15
2G L Lob

(14)

2A

13
ZB()

[

Y

oL q>-
Dot d>

4
“ voL

5
© viL

6
© qv2.L

7
D qvaL

"9 avo L

U v L

10
19 ava L

9
© avs L

74x139

o1 1voloi—
11 lo—

i 12l —
‘18 1v3lo—
_Bol26 2v0 o%
2v1 o

“loa 2v2 0

K] PY RV o S

(b)

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

1/2 74x139

G

A
B

YO
Y1
Y2
Y3

177

(c)

Fig 6-34 [Wakerly]. 74x139 (a) logic diagram (b) inputs and outputs

74x138 3-t0-8 decoder

| Table 5-7 Truth table for a 74x138 3-to-8 decoder.

Oulputs

inputs

Y7L Y6 L Y5.L Y4 L Y3 L Y2 L Y1_L YOL

A

G2A_ L G2B L C B

G1

Truth table for 74x138 decoder [Wakerly]

(@)

6
G1()

4
G2A L @

(®)

(15)

YO L

(14)

Y1_L

(13)

Y2 L

G2B_L

(1)

9

@)

(12)

Y3 L

(1)

Y4 L

(10)

o

(©)

>

Y5 L

YT Y

©)

Y6_L

o

>

(@)

Y7 L

o

>

(b) 74x138
_Slgr Y0P :i
‘oleea T PT
Egl Y2 jo—
G2B 12
Y3 lo2—
— YA Y4 0 :;
S YS O
_ 3] C Y6 07_
Y7 lo—

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Fig 6-35 [Wakerly] Logic diagram for the 74x138 3-to-8 decoder

Implementation of logic functions
with decoders

The decoders can be used to "
realize logic function, like in figure ™

9.15. The decoder implements the . b —3_
functions f1 and f2: | 4010 g ™
fila.b,c,d)=m; + m; + m,] scoder O
—— i —

frla, b.e.d) = mg + m; + my
Iz 2l ::
my —
(] o —

Indeed, applying De Morgan,

we have: FIGURE 9-15
Realization of a
C e Multiple-Output
fi = (mym;my) Fig 9-15. Circuit Using a
. Decoder
Implementing
fo = (mymzms) logic functions

with decoders
[RothKinney]

Cascading decoders

Figure 6-38 [Wakerly]: Cascading
two 3-to-8 decoders to obtain a 4-
to-16 decoder:

The 3 less significant input lines
N2, N1, NO are connected to the
data inputs of each decoder

The most significant input line N3
IS used to select between the two
decoder circuits:

N3 selects first decoder when it is
low (0) => less significant input
lines DECO L — DECY_L active

If N3=1 second decoder selected,
most significant output lines
DEC8 L to DEC15 L active

+5V 74x138
Y1 10—
40 G2A 13
5 Ol G2B Y2 10—
Y3 o—:f
Y4 [O—
NO A 10
2 Y5 |I0O—
N1 B Y6 9
N2 °fc v °C
N3
EN_L —¢ U1
74x138
15
6 G1 YO [O—
2 Y1 jo—
Ol G2A 13
‘olees V2P
3 Y3 lo—
A Y4 OL
12 e
B Y6 [o—
Y7 lo—
Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e u2

DECO_L
DEC1 L
DEC2_L
DEC3_L
DEC4_L
DEC5_L
DEC6_L
DEC7_L

DECS8_L

DEC9 L

DEC10_L
DEC11_L
DEC12_L
DEC13_L
DEC14_L
DEC15_L

Fig 6-37 [Wakerly]:
designing a 5-t0-32
decoder using 74x138
decoders

Most significant lines
N4, N3 are decoded by
a 2-to-4 decoder in
order to obtain selection
inputs for the 4 3-t0-8
decoders that have lines
N2, N1, NO as inputs

First decoder can be
replaced with a 3-to-8
decoder, using only
inputs lines B for N4
and A for N3, with input
C connected to GND.

74x138

oleg YO o% DECO_L
Y1 jo“— pECI1_L
500 g;’;‘ Y2 o% DEC2_L
v3 lo-2— DEC3_L
1 va o DEC4_L
NO A 10
N1 2|5 Y5 jo~— DEC5_L
N2 Bl Y6 |O~— DECG L
Y7 lo— DEC7 L
U2
74x138
6lg, YO o% DECS L
ocza Y107 DECOL
o Y2[0r DECOL
v3 lo-2— DEC11_L
an Y4 o% DEC12_L
112 74x139 = I Y5 (05— DECT3_L
3 Y6 jo— DEC14_L
EN3 L —o{1G 1Y0 ; E:gﬁ:g"l_ c Y7 lo— DEC15_L
N3 2 1A 1:; ge EN16X23_L u3
Ne— s 1ys bl _EN24X31L 74x138
— 6l YO o% DEC16_L
e Yo DECITL
e Y2 DECIEL
Y3 lo'2— DEC19_L
an Y4 o% DEC20_L
ENt 2|5 Y5 Jo—— DEC21_L
o L e ¥6 oo — DEC22 L
= Y7 lo— DEC23_L
Ua
74x138
6lgy YO o% DEC24 L
o|oea Y107 DECEL
Sem Y25 DEC®L
Y3 lo'2— DEC27_L
an Y4 o% DEC28 L
2| Y5 jo—— DEC29 L
3 Y6 fo°— DEC30_L
Copyright © 2000 by Prentice Hall, Inc. c Y7 [o— DEC31_L

Digital Design Principles and Practices, 3/e

uUs

Encoders

An encoder performs the inverse function of a decoder.

Figure 9.16 shows an 8-to-3 priority encoder and its truth
table.

If only one input y; Is active (i.e. itis 1) and the other
Inputs are 0, then the abc outputs represent the binary
number I.

If more than one y; are 1 at the same time, then the
output will be defined using a priority scheme, e.g. the
priority increases from y, to y, (highest input determine
the output)
— If y, is active, the others input do not care and so on.
— Here X means don’t care, not unknown value, the notation can
be confusing !

Output d is 1 if any input is 1 (active), otherwise it is O.

FIGURE 9-16
An 8-to-3 Priority
Encoder

VULl

Priority encoders

8-10-3

Priority
Encoder

by

l

=
=
~
o~
=
N
o

o

abec

S ¢ O OO OO D|N

XXX XX KKK —- O
XXX KK —m O O
XXX XK - OO O
- e 4 % A - - - W
XX XK - OO OO O
X OO oo oo ©
- - - - - - -

000
000
001
010
011

b end ond o=b
——O O

—_O0 —_-, O

Fig 9.16. Priority encoder with truth table. [RothKinney]

Priority encoders

* A naive implementation:

— From the table from fig 9.16 it follows that:
*aA=YstYstYstyy
* b=y, +ystysty;
*C=Y, +tYstYstYyy
*d=YyotY;+Y, * Y3ty tYstYstYy
— But, if y,=1 and y,=1 in the same time, the output of
the decoder will be abc = 110, which corresponds to
Y !
— The problem was that we did not prioritize between
the inputs y, , ..., Y, when more than one is active

Priority encoders

 The correct solution: we have to take into account the
priorities of the inputs

* In this case, the priority increases from y, to y-,

« We define eight intermediate variables, HO to H7, such
that Hi is 1 if and only if y; is the highest priority 1 input
[Wakerly]:

- H7/ =y,
- H6 =yqy;
- H5=ys5 ygyy

— HO=Yq Y, Vo "Y3'Y4 Y5 Vs Y7

Priority encoders

 Now the equations for a, b, c and d
become:

—a=H4+H5+H6+H/
—b=H2 +H3 + H6 + H7
—Cc=H1+H3+H5 + H7
—d=HO+Hl1+H2+H3+H4+HS5+H6+H7

Priority encoders

Priority 74x148
encoder
. —°olEl
] o7
—16 A2 — 3 6
—11I5 A1 2 6 A2 7
— 14 A0 |— —9b AIOT—
; — o4 Aofo—
—112 IDLE —— > '3
; 2oz 6s o:“—
" — g1 Eojo=
— Yo 10

Copyright © 2000 by Prentice Hall, Inc. Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e Digital Design Principles and Practices, 3/e

Fig 6-47 [Wakerly]: Logic Fig 6-48 [Wakerly]: Logic
symbol for a generic 8- symbol for the 74x148 8-
input priority encoder input priority encoder

Truth table for 74x148 priority
encoder

| Table 5-23 Truth table for a 74x148 8-input priority encoder.

Inputs Outputs
ElLIOLMLI2LIBLI4LISLI6LI7L A2 L AML AOL GS L EOL
Table 6-27 Lobnt bt utiletir - AL A0l GSLEO
[Wakerly] 1 X X X X X X X X 1 1 1 1 1
Truth table X X X X X X X 0 0 0 1
for 74x148 0 1 1

»a
Pol
Pa)
>
»
»
(=)
—
(=] (=) o O

—
—

S o O o o o o o
—

[u—y
[u—
[a—y
[a—y
[a—
[e—
[u—
[u—y
[u—
[u—
[u—y
[u—y
(=]

74x148 priority encoder

The output line GS_L (group
select, or “got something”) is

active when at least one input Cneoder

IS active

Output EO (EO_L) is active / REQ1 —

when no input line is active REQ2 — —
EO is used for cascading Requests) REQ3 — . Reguestors
priority encoders: it will be .

connected to the EI_L input of REQN B
the next priority encoder (the :

less significant one) Copyright © 2000 by Prentice Hal, I
Next f|gure ShOWS the ma|n Digital Design Principles and Practices, 3/e
application of priority

encoders: there are N=2" Fig 6-45 [Wakerly]: A
requestors and the outputs of system with requestor

the encoder indicates which

. . : and the request encoder
requestor IS active at any time

Commercial multiplexers.
Applications of multiplexers and
demultiplexers

Commercial multiplexers
Expanding multiplexers
Multiplexers, demultiplexers and busses

Using Shannon expansion theorem for
designing with multiplexers

Fig 6-60
[Wakerly]: The
74x151 8:1
multiplexer. (a)
logic diagram

(b) Logic symbol
The output
appears both

active-1 (Y) and
active-0 (Y_L)

EN_L: enable
input

EN_L

DO

D1

D2

D4

D5

D6

D7

")

()

)

e

@)

)

(15)

)

6)

(14)

(13)

74x151

EN

(12)

A
B

-
o

Cc

(1)

10
B (10)

(9)

¥ Y Y

DO Y
D1 Y

i

(oY

D2
D3
D4
D5
D6
D7

-
[3)]

-
EN

Y
w

-
N

(@) (b)

Truth table for 74x151 MUX

Table 5-34

Inputs Outputs
Truth table for a

74x151 8-input, ENL C B A Y Y L

1-bit multiplexer. 1 < x x 0 1

0 0 0 0 DO DO

Table 5-34 [Wakerly]. Truth o o0 o0 1 DI D1’
table for 8-input, 1-bit o o0 1 0 D2 D2
multiplexer 0 0 1 1 D3 D3
0 1 0 0 D4 D4

0 1 0 1 D5 D5

0 1 1 0 D6 D6

0 1 1 1 D7 D7

74x157 MUX

Inputs Outputs Table 5-35
Truth table for a
G_L S 1Y 2 3Y 4Y 74x157 2-input,
1 X 0 0 0 0 4-bit multiplexer.
0 0 1A 2A 3A 4A
0 1 1B 2B 3B 4B

Table 5-35 [Wakerly]: truth table for a 74x157 2-input, 4-bit MUX

Figure on next slide: Fig 6-64 from [Wakerly]: 74x157 2-input 4-bit
multiplexer: (a) logic diagram; (b) logic symbol
74x151 contains 4 2:1 MUXes

> >- >-
~ - (32] <
To)
= 8/ ‘saoioeld pue sajdioud ubisaqg jenbig
N "ou| ‘[leH &dpuald Aq 000Z © IyBuAdoD
m m m m
O w M - M N % 3) M <
N|o|w —|o| | m»
ﬁ - | | | <
o
Y
= X e -
3 S))
OO0 Ju ﬂ
o= S D 8 S = =) s e
m m m m

@ gL

Expanding multiplexers

If we want to make a larger MUX from the
available MUXes and decoders

In the next figure (figure 6-62 from [Wakerly]):
Combining 74x151s to make a 32-to-1
multiplexer) 3 of the selection lines are common
(XAO to XA2), while the most significant
selections line are inputs to the decoder

The outputs of the decoder are connected to the
enable inputs of the MUXes in order to select
them

The outputs of the 4 MUXes are connected by a
NAND gate (from a 74x20 IC)

Fig 6-52
[Wakerly]:
combining
74x151s to
make a 32-to-1
multiplexer

74x151

XAO —olEN
XA1 1" A
XA2 fg
N s
i'; 3 g? z_e XO0_L
X2 212
X3 Up3
X4 {4
X5 “Ips
X6 1 pe
X7 21 by
1/2 74x139 vz
XEN L—ol16 1vo ol ENOL 74x151
11 o2 ENLL)
xaz —21A vz ol ENZL 9N
xae —21B 1y3jol ENSL 10 g‘
Ui i :
ig 3 g? Y[xo1L
X10 212
X11 Up3
X12 a2 [
x13 “Ips
X14 :: D6 , 127420
X15 D7
U3 2 .
P XOUT
74x151 5
Us
L "olEN
1" A
10 B
4e :
X16 DO Y[
oy Bl o v ot xo2.L
x18 21p2
X189 {ps
%20 15 D4
x21 “Ips
x22 “lpg
x23 217
U4
74x151
L "olEN
1
A
10 B
e s
g; 3 g? :_e X03_L
X26 21p2
xa7 b3
X28 15 D4
X29 1 D5 Copyright © 2000 by Prentice Hall, Inc.
X30 13 D6 Dightal Design Princlples and Practices, 3/e
X31 2{p7

us

Multiplexers, demultiplexers and

buses

A demultiplexer (DEMUX) performs the opposite function
of a multiplexer:
— Has one data input
— Has n selection inputs
— And 2" outputs
— The input will be connected to the output who's number is given
by the binary number that represents the selection inputs

A MUX can be used to select 1-out-of-n sources of data
and transmit it on a bus

At the other end of the bus a DEMUX can be used to
route the bus data to one of the destinations

A demultiplexer can be implemented with a decoder (e.qg.
with a 74x139 2-to-4 decoder, or with a 74x138 3-t0-8
decoder)

Figure 6-64
[Wakerly] A
mux driving a
bus and a
demultiplexer
receiving the
bus: (a)
switch
equivalent; (b)
symbols

(a)

(b)

MUX-DEMUX

multiplexer demultiplexer
SRCA l l DSTA
SRCB] BUS ,———— DSTB
SRCC * o *s DSTC

. . :I I I' .

SRCZ i i DSTZ

SRCSEL DSTSEL

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e
SRCA — | | psma
SRCB —— ——— DSTB
BUS S

SRCC ——— MUX DMUX ——— DSTC
L DsSTZ

SRCZ _jf

SRCSEL DSTSEL

(@

Demux implemented with a

decoder

2-to-4 decoder (b) 1/2 74x139

SRCDATA — G YO —— DSTODATA SRCDATA_L —Q| G YO
Y1 —— DST1DATA Y1

DSTSELO — A Y2 |—— DST2DATA DSTSELO — A Y2
DSTSEL1 —— B Y3 |—— DST3DATA DSTSEL1 —— B Y3

O—— DSTODATA_L
O—— DST1DATA_L
O—— DST2DATA_L
O—— DST3DATA_L

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Fig 5-67 [Wakerly], third edition: Using a 2-to-4 binary decoder as

a 1-to-4 demultiplexer (a) generic decoder; (b) 74x139

The input data is connected to the enable input of the decoder; the

selection inputs of the demux are connected to the selection

inputs of the decoder.

Using Shannon expansion theorem
for designing with multiplexers

° f (Xl’ X2, C ey Xi-l’ Xi’ Xi +11 = s Xn):
=X F (X, Xoy o ooy Xiqy O, Xipqy o ooy X)) 7+
Xi - T(Xg, Xo0 o+ o3 Xigs 1y Xiggs « - 44 X)=

=X - To+ X - 1y
This means that we can implement an n-variable function
with two (n-1) variable functions and a 2:1 mux

In general, we can implement (realize) any n-variable
function (n>4) with 2(™4 4-bit function generators and
one 2(™4) -to-1 mux.

This is very useful in FPGAs, where the internal structure
contains many MUXes and 4-bit function generators
(FGSs)

Example of expansion theorem

Example for a 6-variable function
G(a,b,c,d,e,f)=a’-G(0,b,c,d,e,f) + a-
G(1,b,c,d,ef)=a - Gy+ta-G;;
G,=b'G-(0,0,c,d,e,f) + b-G(0,1,c,d,e,f) = b’
‘Ggoth-Gy,

G,=b'G(1,0,c,d,e,f) + b-G(1,1,c,d,e,f)=b'G,,
+Db-Gyy

An implementation is shown In the next figure

Designing with MUXes

Fig 9-36 [RothKinney]:
Realization of 5- and
6-variable function with
function generators
(FGs) and MUXes.

In fig 9-36 (b) the 4:1
MUX is implemented
as a tree of 2:1 MUXes

,,-T"

(a) 3-variable function

il

FC _|

U
L

)

T+

(b &-variable function

T

Read-Only Memories

A read-only memory (ROM) is an array of semiconductor
devices that are interconnected to store an array of
binary data

Once stored in the ROM, the binary data can be read,
but cannot be modified (under normal operating
conditions)

A ROM implements (i.e. stores) the truth table of a
function (or of several functions)

Figure 9.17 shows a ROM with 3 input lines and 4 output
lines

Each output pattern stored in the ROM is called a word

Since the ROM has 3 input lines, it means that it can
store 23=8 words.

Fo iR F

FIGURE 9-17 1 AB C
An 8-Word x 4-Bit e Tno T ROM
RO |.|.:-."__I|:|1| ut B B 00 0
__»| *4Bits 001
010
P vyy o o1
:r. i F. F. 1{]{]
S 101
Four Output Lines 110
(a) Block diagram 111
(b)

Fig 9-17. [RothKinney] A 8-word x 4 bit ROM

L IR e PR = I I

0

1
1
1
0
1

1

D= 000 ==

b) Truth table for ROM

Typical Data
Stored in
ROM

(2° words of
4 bits each)

In general a ROM with n input lines and m output lines
can store 2" words, each word having m bits. (fig 9.18)

One input lines combination serve as an address to

select one of the 2" words:

— When the input combination is applied to the inputs, the outputs
will contain the word stored at that address

— In fig 9-18, when 00...11 is applied to the input (the address
lines) of the ROM, the output will be 110...010

A 2"x m ROM can realize m functions of n variables

Typical sizes of ROMs: from 32 words x 4bits to 512 K
words X 8 bits and even 1024 K words x 8 bits (1 Mega
word of 8 bits)

For memories 1 K = 210 =1024 ! (10 address lines)

With 20 address lines we can address 220 = 1024x1024
= 1 Mega words of data

FIGURE 9-18 — n Input m Output
Read-Only Memory ; pput | —> "'R\S:r'ds Variables | Variables
with n Inputs and Lines _» il 00---00 100 --- 110)
m Outputs H l 00---01 | 010---111 |
00---10 101 ---101 |
o o Typical Data
P = . u " : e | Array Stored

11...00 | 001-:.011 [inROM
11 =<1 110...110 | (¢"words of

11---10 011...000 | ™M bitseach)
11---1 111---101

Fig 9-18. [RothKinney] ROM with n inputs and m outputs

Basic ROM structure

A ROM consists of a
decoder and a memory
array (see fig 9-19)

When a pattern of Os
and 1s is applied to the
decoder inputs, exactly
one of the decoder’s
outputs will be active.

The active output line of
the decoder will select a
word from the memory
array.

The selected word will
appear at the outputs of
the ROM.

FIGURE 9-19
Basic ROM
Structure

ROM
I
[
. e -
| i
— I
[

Fig 9-19 [RothKinney]
Basic ROM structure

ROM example 1

Figure 9-20 shows a possible internal structure of the
ROM from fig 9-17.

The decoder generates the 8 minterms that can be
obtained with 3 input variables

The memory array forms the four output functions F,, F,,
F,, F; by ORIng together selected minterms.

— F, is the sum of minterms 0,1,4 and 6

— F, is the sum of minterms 2,3,4,6 and 7, etc

A switcing element is placed at the intersection of a word

line and an output line if the corresponding minterm has

to be included in the output function

— If the minterm will not be included in the output function the
switching element remains unconnected (it will be omitted)

If the minterm is 1, then the word line is 1 and the output

line connected to it will be also 1

Example 1

* If none of the word lines connected to an
output line Is 1, then the pull-down
resistors will cause the output to be O

* In this way the switching elements form an
OR array: an OR gate for each of the
output lines

* The minterms that form a function are
connected to the output line that
corresponds to that function.

FIGURE 9-20
An 8-Word = 4-Bit
ROM

myg = A'BC’ %

Example 1

K

:'_,V\/I.lﬁ

m; = A'B'C

my = A'BC’

My = A'BC

Vv

my = AE'C’

ms = AB'C

mg = ABC”

7 14 | |4#

o = ABC o

g

yIRC I

el e

=

Wrrary

Example 1

The functions implemented by the Fo=2m(0.1.4.6) = A'B" + AC

- : W =3m(2.3,4,6,7) = B + AC’
ROM from figure 9-20 are given f1=2m(2,3,4,6,7) = B+ AC"
aside F,=2m(0,1,2,6)=A'B" + BC

F,=%m(2,3,5,6,7)=AC+ B
What is important is the minterm list

representation of the functions, not
their minimized form.

Functions implemented by the
ROM from fig 9-20.

Figure 9-21 gives the equivalent OR

gate for function F, FIGURE 9-21
Equivalent OR Gate

Bellow we have the algebraic for Fy
minimization of F:

-,

}

F,=A-B-C'+A’.B’.C+A-B’-:C’+A-B-C’'=A’-B’-(C+C’) + A-C’-(B+B’)=A"-B’'+A.C’

[LLU

Another example: code converter

Figure 9-22 shows the truth table and the logic circuit for a
code converter that converts a 4-bit binary number to the
ASCII representation of its hexadecimal digit

ASCII: American Standard Code for Information
Interchange: a 7-bits code for representing digits, letters
and other characters.

— The character A is represented by the combination 41,,, or 100
0001 in binary, etc

From the table we can see that A5=A4 and A6=A4" => the
ROM will have 4 input lines and 5 output lines (16 words by
5 bits)

The switching elements at the intersections of rows and
columns are marked by X's:

— An X indicates that the switching element is presented and
connected

— No X means that the corresponding element is absent or not
connected

Code converter

L) I'.I-

ASCH Code for Hex Digit
A A A A A A A

0

0

0

0

0

0

Hex
Digit

(= e N S I 5

=== Jr—
0o o 0
DD 00—

oo o oo o

Input
WXxyéd

FIGURE 9-22
ASCIl Code
Converter

Hexadecimal-to-

-

—
— —

o

Lo Iy |

LY = I

= =
- =

— —

B O
SO O =0 O~
e o e e e L L S

—ro Qoo

1111111111 e e e e R e
1111111111 e O e e e e |

B v = r— = —

=R = = =
o — o o o—
oo~ — — —

— e e e e e e e

FIGURE 9-23
ROM Realization of
Code Converter

Code converter

oL
— -
SES s
— . % T
!—!- + x
e R -
.:.:'\-_-'
e
; x
T

Types of ROMs

 The most common types of ROMs are:

Mask-programmable ROMs
Programmable ROMs (PROMSs)
Electrically erasable ROMs

« Mask programmable ROMs:

They are programmed at the time of manufacture
Data is permanently stored and cannot be changed

The presence or omission of the switching elements is realized
with a mask

The realization of a mask is expensive =>

This type of ROM is economically feasible only for a large
guantity

 PROMSs: can be programmed by the user, but only once

EEPROMS

Can be erased and re-programmed

They use a special charge-storage mechanism to enable
or disable the switching elements in the memory array

They are programmed with a PROM programmer
Data stored is permanent, until erase

The erasing and reprogramming cycles are limited (100-
1000 times)

Programming voltages are higher than in normal
operation

Also, programming times are much higher than their
normal delays)

Flash memories are similar to EEPROMSs, but they use a
different charge-storage mechanism

— Also, have built-in programming and erase capabilities => don'’t
need a special programmer

Programmable Logic Devices

« Types of Programmable Logic Devices (PLDs):
— Programmable Logic Arrays (PLA)
— Programmable Array Logic (PAL)
— Complex Programmable Logic Devices (CPLD)
— Field Programmable Gate Arrays (FPGA)

 CPLDs and FPGAs contain also sequential
elements

— They are used as target circuits for high-level
synthesis: a description in a HDL like VHDL or Verilog
Is synthesized on a CPLD or FPGA.

PLA

A PLA with n inputs and m outputs can realize m
functions of n variables (like a ROM !)

The Internal organization of a PLA Is different from that
of a ROM (see fig 9-24):
— The decoder is replaced by an AND array which realizes
selected product terms of the input variables
— The OR array ORs together the product terms in order to form
the output functions
A PLA implements a sum-of-products expression, while a
ROM implements a truth table.

The expressions implemented in a PLA are not
necessarily minterms, as they are for ROMs, but rather
minimized sum-of-products

When the number of input variables is large, but the
number of product terms is not very large, a PLA IS more
economical than a ROM.

PLA structure

FIGURE 9-24

PLA
Programmable
. —
Logic Array I
LR

— =

Structure imput | —— AND |
2

i

Fig 9-24 [RothKinney]: PLA structure.

PLA example 1

PLA from fig 9-25 implements the same logic functions
like the ROM from fig 9-20.

While at ROM we used directly minterms, for PLA we
use the minimized functions.

Product terms are formed in the AND array by

connecting switching elements at the appropriate points

In the array.

— For example, to form A’-B’, switching elements connect the first
word line with the A’ and B’ lines

In the OR array, switching elements are connected to

select the product terms needed for the output functions

— For example, for F,=A"-B’ +A-C’, switching elements connect
A'-B’and A-C’ lines with F line.
PLA connections are equivalent with AND-OR array from
fig 9-26.

FIGURE 9-25

PLA with Three
Inputs, Five Product
Terms, and Four

Outputs

3557

Example 1 PLA

Fo=2m(0,1.4,6)=A'B' + AC’
Fi=2Zm(2,3,4,6,7)=8B+ AC
F,F=2m(0,1.2,6) = A'"RB" + BC
F=%2m(2,3,5,6,7)=AC+ B

.||]

AR’

=3 =3 Y =
= =] =
/@I BC” \%\

= . =

=

Fig 9-25 [RothKinney]: PLA with three inputs, five product terms, and four outputs

Example 1 PLA

FIGURE 9-26 A B e
AND-OR Array

Equivalent to OR Armay
Figure 9-25

=

e
=y

=
™

o
™

|L'-_J k__,-f| |h,__,f-“| |‘-,__,J| L_x’

wivivlw
AND Armay \JL/ \M« \j/ \H/

Fig 9-26 [RothKinney]: AND-OR array equivalent to Figure 9-25.

Table 9-1
[RothKinney]:

PLA table for
Figure 9-25.

The content of a PLA can be specified by a PLA table.

Example 1 PLA

TABLE 9-1
PLA Table for
Figure 9-25

Product Inputs Outputs
Term ABC FRFF
AR 00- 1010
AC 1-0 1100
B -1- 0101
BC - 10 D010
AC 1-1 D001

Fo=A'R"+ AC
F,=AC +8B
F,=A'B"+ BC
Fi=8+ AC

The inputs indicate the product terms: symbols 0, 1 and — indicate if a variable is
complemented, un-complemented, or not present in the corresponding product

term.

The outputs indicate which product terms appears in the output functions: 1
indicate that the product term is present in the output function, 0 that it is not

present.

Example 2

In example 2 we implement

equations (7-23b) from The PLA structure is
[RothKinney], shown given in Fig 9-27 (b).
below: « Adot at the intersection
f,=a’-b-d+a-b-d+a-b’-c’+b’.c of a word line and an
f,=c+a’-b-d Input or output line

Indicates the presence of
a switching element in the
array

f;=b-c+a-b’-c’'+a-b-d
The PLAtable is in fig 9-27
(a).

AGURE 9-27 abcd f, f; 15

PLA Realizatlon of 59 _ 4 110
Equations (7-23k) 11-1 101
100 - 101

-01 - 100

--1- 010

-11- 001

{a) PLA table

Fig 9-27 ,
[RothKinney] i f | 1
VIVIVIY..
ahd
ab’c’
b'c
&

(b1 PLA strachare

PAL

Programmable Array Logic (PALS) e Nonimverted Output
are special cases of PLAs in which o
the AND array is programmable

and the OR array is fixed.
The symbol from

The PALs are less expensive than above represents an
PLAs. input buffer which is
Their functions are minimized logically equivalent
independently of each other, since to:

the AND terms cannot be shared

between several OR gates. .

Fig 9-28 shows a PLA segment (a)
unprogrammed and (b)
programmed.

Connections to the AND gate in a PAL are
represented by X's, as shown [RothKinney]:

FIGURE 9-28 |
PAL Segment | —w |
£} I

Cr X
i3 H_.DL >_

i £ p .)j
Fig 9-28 : _[;,. "
[RothKinney]:

PAL segment. (2) Unprogrammed

D"—r LB+,
4%

(b Programmed

2

FIGURE 9-29 , |
Implementation of ' _:;
a Full Adder Using ¥ —1°
a PAL -

ok

Fig 9-29
ﬂ”‘l_':
[RothKinney]: i i D_u'. >
Implementation of sk %::l
a full-adder using D_I_’J—
a PAL.

Equations of the
full adder are
given on the right
side:

Sum = X'Y'Cy + X'YC, + XY'Cl, + XYC,
C.y= XCo + YO, + XY

Exclusive-or Gates

The output of a exclusive-

OR (XOR) gate is 1 only XeY (Xeoy Table 5-45
when only one of its (XOR) (XNOR) Truth table for XOR
inputs is 1, and 0 and XNOR functions.

otherwise

XNOR gate produces the
negated function of an
XOR gate

'—‘P—‘OOX

Y
0 0
1
0
1

_— O O

1
1
0

XNOR function it is also

called coincidence Truth table for XOR and XNOR functions
because itis 1 when the [Wakerly]

inputs are equal

Exclusive-OR gates

(@)

9>

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

G-
5>

-
D

Fig 6-69 [Wakerly]: Equivalent symbols for (a) XOR; (b) XNOR

The most common are the leftmost symbols

Exclusive-OR gates

Figure 6-68
[Wakerly]:
Multigate
designs for the
2-input XOR
function: (a)
AND-OR; (b)
three-level
NAND

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

(a)

(b)

F=X®Y

T
b
Ba

:D—F=X@Y

Y YU L

(a)
XOR gates

can be used
In parity
circuits, for
determining
the odd -
parity of a
number of
bits: the
output will
be 1 if the
number of 1
bits is odd

(b)

IM
IN

Parity circuits

ODD

OoDD

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Fig 6-70 [Wakerly]: Cascanding XOR gates: (a) daisy-chain (b) tree structure

Active levels

Table 5-1 Table 5-1 Active Low Active High
[Wakerly]: Each line shows a READY— READY+
different naming ditferent naming ERROR.L ERROR.H
conventions. We Icon\llentlon for active ADDRA5(L) ADDR15(H)
have used the evels. RESET* RESET
convention from ENABLE~ ENABLE
the last line of the ~GO GO

table. /RECEIVE RECEIVE
At circuits, active TRANSMIT L TRANSMIT

low inputs and
outputs are

represented with _ : :
an inverting Active levels are the level on which signals are

bubble. “doing their things™ [Wakerly].

