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Administrative

◮ Instructor: Doru Todinca, room B622

◮ e-mail: doru.todinca@cs.upt.ro
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◮ Labs are mandatory and will count 50% in the final mark

◮ The lecture is also mandatory

◮ Examination: written exam, counting 50% of the final grade
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Textbook

◮ Textbook: John F. Wakerly, Digital Design: Principles

and Practice, Third Edition, Prentice Hall, Inc, 2000

◮ The fourth edition was published in 2006

◮ Third edition of Wakerly’s textbook was translated in
Romanian: “Cicuite digitale: Principiile si practicile folisite in
proiectare”, Teora, 2002, ISBN 973-20-0659-5

◮ If not specified otherwise, my presentations are entirely based
on John Wakerly’s book

◮ in the sense that figures, tables, definitions, examples, etc,
from third edition are used for these presentations

◮ Handouts will be enough for your exam, but Wakerly’s book
may be useful.



Principles and practice

◮ Most of the principles that you learn now will continue to be
important in the future

◮ Maybe some principles will be applied in ways that have not
yet been discovered!

◮ Practice changes much faster, sometimes even before you
start working in the field

◮ For sure many practical things will change through your career

◮ Wakerly: “Treat practice material as a way to reinforce
principles

◮ and as a way to learn design methods by examples”.

◮ These things are valid not only for Digital Logic, but for most
things that you study in college !
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Analog versus digital

◮ Analog signals (produced by analog devices) can take any
value over a continuous range of values (of voltage, current,
or other metric)

◮ We model a digital signal as taking at any time only two
discrete values

◮ We call these two values 0 and 1, LOW and HIGH, FALSE
and TRUE, negated or asserted, etc.

◮ In reality digital signals do take values over a continuous
range of voltages, currents, etc, but we ignore their analog
behaviour.

◮ Digital abstraction: we associate a range of analog values
with a logic 0 value and another range of analog value with
a logic 1.

◮ The range of values associated to 0 logic and the range of
values associated to 1 logic are separated by a range of invalid
(undefined) values



Analog versus digital: advantages of digital devices

◮ Reproducibility of results:
◮ a properly designed digital device always obtains the same

results (outputs) for the same set of inputs
◮ For an analog circuit this not always true, because its outputs

can vary with temperature, power supply, aging, and other
factors

◮ Ease of design: Digital, or logic design is logic, no special
math needed (e.g. calculus)

◮ Flexibility and functionality: once a problem is in digital form,
we can follow a set of logical steps and solve it.

◮ Programmability:
◮ much of digital design is done using Hardware Description

Languages (HDLs).
◮ HDLs are used for modeling, simulation and synthesis
◮ The use of HDLs in digital design will increase even more in

the future

◮ Speed: digital circuits are very fast



Advantages of digital devices

◮ Economy: the cost of digital circuits decreases, making mass
production very effective

◮ Steadily advancing technology: when designing a digital
system, we know that there will be a faster, cheaper, better
technology in the future, and can anticipate it (e.g. by
providing expansion sockets)

◮ Digital devices replaced analog devices in many domains, in
the last decades:

◮ still pictures (cameras)
◮ video recordings: digital versatile discs (DVDs)
◮ audio recordings: compact discs (CDs)
◮ automobile carburetors
◮ the telephone system
◮ mobile phones
◮ traffic lights
◮ movie effects
◮ and many more !
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Digital devices. Combinational and sequential devices

There are two types of digital devices: combinational devices and
sequential devices

Definition
Combinational devices: their outputs depend only on the current
input combination (i.e., the combination of their input values)

Definition
Sequential devices: their outputs depend on the current input
combination and the sequence of past inputs.



Digital devices: sequential circuits

◮ Sequential devices have states, or memory, i.e., they store
values

◮ Usually the state of a sequential device can be changed only
at certain time moments, determined by a “clock” input signal

◮ The most basic sequential circuit is called flip-flop

◮ The state of a flip-flop can be either 0 or 1

◮ Or, we can say that a flip-flop stores either a 0 or a 1

◮ Flip-flops are built from combinational circuits (from gates)

◮ In general, a sequential device consists of flip-flops and
combinational devices

◮ That’s why we will study first combinational circuits, then
sequential circuits.



Combinational circuits: gates

◮ The simplest combinational circuits are called gates

◮ This is because they control the flow of digital information:
they allow or not to pass certain information from inputs to
output

◮ Gates have one single output and one or more inputs

◮ Of course, inputs and output take analog values, but we
interpret them digitally (0 or 1)

◮ There are three fundamental gates (see figure 1), from which
any other gate can be obtained:

1. AND gate
2. OR gate
3. NOT gate, or inverter



Combinational circuits: gates
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Figure 1 : Digital devices: (a) AND gate, (b) OR gate and (c) NOT
gate, or inverter

Figure 1 shows the symbols of the three fundamental gates, and
their behaviour: all input combinations and the resulting outputs.



Digital gates and truth tables
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Figure 2 : Fundamental gates and truth tables: (a) for AND gate, (b)
for OR gate, (c) for NOT gate

A gate’s behaviour can be expressed more compactly using the
truth table (see figure 2)
The figure shows also the functions realized by the three gates: X
AND Y, X OR Y, and NOT X



Inverting gates
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Figure 3 : Inverting gates:(a) NAND, (b) NOR

◮ We can combine an AND gate and a NOT gate, obtaining a
NAND gate

◮ The circle on the gate symbol is called inversion bubble, and
it means that the output of the gate is negated

◮ Which means that, instead of function X AND Y, the gate
implements the function NOT(X AND Y)

◮ Similarly for NOR gate, the function is NOT(X OR Y)



Logic values, logic signals and gates. Definitions

◮ A logic value, 0 or 1, is called a binary digit, or bit.

◮ If more than two values are needed, then we can add more
bits.

◮ With n bits we have 2n different values.

◮ When we discuss electronic logic circuits we use LOW and
HIGH for 0 and 1.

◮ LOW: a signal is in the range of algebraically lower values,
which is interpreted as logic 0.

◮ HIGH a signal is in the range of algebraically higher values,
which is interpreted as logic 1

◮ Association between 0 and LOW and 1 and HIGH is arbitrary,
and is called positive logic.

◮ The opposite association, i.e., 0 to HIGH and 1 to LOW is
called negative logic. Normally we use positive logic.



Logic values, logic signals and gates. Definitions

◮ The operation of a combinational circuit is fully described by
a truth table that lists all combinations of input values and
the output value(s) produced by each input combination.

◮ For a combinational circuit with n inputs, the truth table has
2n lines.

◮ The behaviour of a sequential circuit can be described by a
state table

◮ The state table specifies next state and the output as function
of its inputs and current state.



Logic values, logic signals and gates. Definitions

◮ An AND gate produces a 1 output if and only if (iff) all its
inputs are 1. Otherwise its output is 0.

◮ It means that, if at least one input is 0, the output of an AND
gate is 0.

◮ The output function of an AND gate with inputs X and Y is
denoted X AND Y or X · Y .

◮ An OR gate produces a 1 output if and only if one or more
inputs are 1.

◮ It means that an OR gate produces a 0 output iff all inputs
are 0.

◮ The function of an OR gate with inputs X and Y is denoted X
OR Y or X + Y .



Logic values, logic signals and gates. Definitions

◮ A NOT gate (an inverter) produces an output value that is
the opposite of the input value

◮ It means, when the input is 0, the output is 1; when the input
is 1, the output is 0

◮ The function of the NOT gate with input X is NOT X,
denoted also X , or X ′. We will prefer the notation X ′.

◮ We can combine AND and NOT to obtain the NAND gate,
with the function NOT(X AND Y),or X · Y ,or (X · Y )′, or X
NAND Y

◮ The output of a NAND gate is the opposite of and AND gate
(is 0 iff all inputs are 1)

◮ A NOR gate is obtained by combining an OR and an inverter

◮ The function of a NOR is denoted NOT (X+Y), or X + Y , or
(X + Y )′, or X NOR Y

◮ The output of a NOR gate is the opposite of an OR gate: a 0
iff one or more inputs are 1.



Representations of a digital device

1. The “black-box” representation (fig 4):

◮ Minimum amount of detail: only the number of inputs and
outputs

◮ It does not describe the functioning of the device (how it
responds to input signals

2. The truth table: for combinational circuits (fig 5)

3. Logic diagram (logic circuit) (fig 6): we will learn how to
obtain the logic circuit from the truth table

4. Timing diagram (fig 7):

◮ Contains the time dimension of the circuit’s behaviour
◮ It shows how the circuit might respond to the time-varying

input signals
◮ It shows also that the logic signals do not change

instantaneously from logic 0 to logic 1: the signals have a
slope, visible on the oscilloscope, but not in simulation

◮ Also, we can see that there is a lag between an input change
and the corresponding output change (circuit’s delay): it can
be visualized by simulation



Representations of a digital device
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Figure 4 : Black-box representation of a 3-input, 1-output logic circuit

Table 3-2
Truth table for a 
combinational logic 
circuit.

X Y Z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Figure 5 : Truth table for a combinational logic circuit



Representations of a digital device
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Figure 7 : Timing diagram for a logic circuit
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Logic values and undefined values
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Figure 8 : Logic levels for CMOS
circuits

◮ Between 0.0 V and 1.5 V is
the voltage interval
representing logic 0 values

◮ Between 3.5 V and 5.0 V is
the voltage interval
representing logic 1 values.

◮ Between the 0 logic values
and 1 logic values is the
interval for undefined
(invalid) values: the interval
1.5 V to 3.5 V.

◮ The values are for the
CMOS integrated circuits.



The noise margins
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Figure 9 : Logic levels and noise
margin

◮ The domain for logic 0
output values is smaller than
the input interval for logic 0
values and included in it.

◮ The difference between
them is the noise margin.
Similar for logic 1 intervals

◮ If a noise signal affects the
output of a circuit, the
output will be correctly
recognized as a logic 0 (or
1) by the input of the next
circuit if the noise signal is
smaller than the noise
margin.



Logic families

◮ First electronically controlled logic circuits were based on
relays (1930, Bell Labs)

◮ Eniac, first electronic digital computer was built with vacuum
tubes (mid-1940s)

◮ Invention of semiconductor diode and bipolar junction
transistor made computers smaller and faster (late 1950s)

◮ In 1960s: invention of integrated circuit (IC): multiple diodes,
transistors and other components on a single chip

◮ Definition: “a logic family is a collection of different
integrated circuit chips that have similar input, output, and
internal circuit characteristics, but that perform different logic
functions”

◮ Most successful bipolar logic family: transistor-transistor logic
(TTL) 1960s

◮ Metal oxide semiconductor field-effect transistor (MOSFET,
or MOS transistor): the base of CMOS family (mid 1980’s)

◮ CMOS technology: most used and easiest to understand !
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Integrated circuits: the fabrication process

◮ “A collection of one or more gates fabricated on a single
silicon chip is called an integrated circuit (IC).” [Wakerly]

◮ The fabrication process starts with a circular wafer that
contains many replicas of the same IC (thousands replicas).

◮ The size of the wafer is “up to ten inches in diameter”

◮ Each piece (IC chip) is called a die

◮ Each die has pads - electrical contact points, much larger
than other IC features, where the wires will be connected later

◮ After fabrication, the dice are tested in place on the wafer
using very small probing pins to contact the pads

◮ Defective dice are marked

◮ Then, the wafer is sliced in order to produce the individual dice

◮ The marked dice are discarded

◮ Each “good” die is mounted in a package, the pads are
connected to the package pins, resulting an integrated circuit

◮ The packaged ICs are tested again before being sold



Integrated circuits: classification by size
1. Small-Scale Integration (SSI):

◮ Contain the equivalent of 1 to 20 gates
◮ Typically SSI ICs contain gates and flip-flops
◮ They come in a 14-pin dual inline-pin (DIP) package (see

figure 10, (a))
2. Medium-Scale Integration (MSI):

◮ Contain the equivalent of about 20 o 200 gates
◮ Typically contain functional building blocks: decoders,

encoders, multiplexers, demultiplexer, registers, counters
◮ The equivalent building blocks are used in larger ICs

3. Large-Scale Integration (LSI):
◮ contain the equivalent of 200 to 1,000,000 gates or more
◮ They include: small memories, microprocessors, programmable

logic devices, and customized devices
4. Very Large-Scale Integration (VLSI):

◮ Separation between LSI and VLSI is fuzzy and is based on
transistor count

◮ ICs with a few millions of transistors are VLSI
◮ They include most nowadays microprocessors and memories,

larger programmable logic devices and customized devices



Integrated circuits DIP packages
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Figure 10 : Dual inline pin (DIP) packages: (a) 14-pin; (b) 20-pin; (c)
28-pin



Pin diagram for several SSI ICs from 7400-series
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Figure 11 : Pin diagram for several SSI ICs from 7400-series



Programmable logic devices

◮ There are many types of ICs that can be “programmed” after
manufacturing

◮ It means that their logic function are established after
manufacturing

◮ Most such devices can be also re-programmed

◮ This is very good for the design process: e.g, if we find an
error, we can change the logic functions of the IC

◮ First such devices were called Programmable Logic Arrays
(PLAs), then, after enhancements, Programmable Array Logic
(PAL) devices

◮ They consist of a two-level structure of AND and OR gates
with user-programmable connections

◮ Today, the generic name for such devices is Programmable
Logic Devices (PLDs)



Programmable logic devices

◮ There are technological limitations in the capacity increase of
PLDs.

◮ Two solutions have been developed:

1. Complex PLD (CPLD): a number of PLDs and a
programmable structure that connects them (fig 12 (a))

2. Field Programmable Gate Arrays (FPGAs): a very large
number of small individual logic blocks and a large, distributed
interconnection structure (fig 12 (b))

◮ Both CPLDs and FPGAs are used for prototyping and they
reduce the “time to market” of a product

◮ This is because of the use of HDLs (Hardware Description
Languages) like VHDL or Verilog: a description of a device
realized in a HDL can be synthesized and downloaded on a
FPGA or CPLD chip in minutes.

◮ Synthesis is the process of transformation of a representation
of a digital device to an equivalent lower level representation.



Programmable logic devices
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Figure 12 : Large PLDs: (a) CPLD; (b) FPGA



Application-Specific ICs

◮ The costs of a LSI chip entirely designed for a specific
customer (from chip’s functions to the transistor level) are
extremely high (more than 500,000 USD), being efficient only
for mass production (e.g. microprocessors, buss-interface
chips)

◮ In order to reduce the costs per chip, semicustom ICs, or
application-specific ICs (ASICs) have been developed

◮ ASICs are “chips designed for a particular, limited product or
application”

◮ IC manufacturers have developed libraries of standard cells,
which usually contain MSI common functions like decoders,
registers, counters, or LSI functions like memories

◮ The ASICs rely on standard cell design: the logic designer
interconnects such functions using the libraries of standard
cells



Printed-Circuit Boards

◮ ICs are mounted on printed-circuit boards (PCBs), called also
printed-wired boards PWBs

◮ A multilayer PCB “have copper wiring etched on multiple,
thin layers of fiberglass that are laminated into a single board”

◮ Individual wire connections are called PCB traces

◮ Most modern PCBs use surface-mount technology (SMT)

◮ The ICs are called SMDs (surface-mounted devices)

◮ They are mounted on PCB (usually by machine), with their
leads bent, and held in place by a solder paste

◮ Then the entire PCB is passed through an oven to melt the
solder paste

◮ Old DIP chips have long pins that poke through the board
and are soldered on the underside
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Digital-Design Levels

◮ Digital design can be done at several levels of abstraction and
representation

◮ Usually a designer works at a certain level of design

◮ It’s necessary for a designer to be able to move up or down
one or two levels

◮ The digital-design levels are:

1. The physical level
2. The transistor level
3. The logic-design level

4. Computer design level (also called register-transfer level, or
RTL)

5. System-design level

◮ The level of abstraction increases from physical to system
level.



Digital-Design Levels: physical level

◮ Deals with “device physics and IC manufacturing process”
[Wakerly]

◮ Main responsible for the progress in IC design (speed and
density) in the past decades

◮ Moore’s Law, stated by Gordon Moore (Intel founder) in
1965: “the number of transistors per square inch in the
newest IC will double every year”

◮ In the last years the doubling of density takes almost 2 years

◮ We do not study this level, but it influences digital design: the
reducing of transistor sizes caused the decrease of
power-supply voltages

◮ This produced major changes in digital design of ICs:

◮ New research domains have emerged: low-power design,
low-power testing, low-power synthesis, etc



Digital-Design Levels

◮ Transistor level
◮ It is not the subject of the Digital Logic course
◮ It will be the main topics of the Integrated Circuits course

◮ Logic-design level
◮ It is the level of Digital Logic course
◮ We will learn how to synthesize RTL devices (multiplexers,

demultiplexers, decoders, counters, registers, etc) from gates
and flip-flops

◮ Computer design level, or Register-transfer level (RTL):
◮ Courses: Computer Architecture, Computer Organization,

Microprocessors
◮ You will use what you learn at the Digital Logic course

◮ System-design level
◮ Courses: Operating systems, Compilers, etc



Digital-Design Levels representations of a multiplexer

◮ Specification:
◮ Design a multiplexer (or MUX) circuit with two data inputs A

and B, a control input S and an output Z
◮ If S=0 then the input A is transferred at the output Z (i.e.

Z=A);
◮ If S=1 then the input B is transferred at the output Z (i.e.

Z=B);
◮ All inputs and the output are one bit wide

◮ The functioning of the MUX as a switch is given is figure 13

◮ The truth table of the MUX is shown in figure 14

◮ From the truth table, we derive the equation for the MUX:

Z = S ′
· A+ S · B

◮ The equation reads: “Z equals not S and A, or S and B”

◮ The gate-level logic diagram that corresponds to this equation
is shown in figure 15, and the MSI IC in figure 16



Digital-Design Levels representations of a multiplexer
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Figure 13 : Switch model for
multiplexer function

Table  1 -1
Truth table for the 
multiplexer function.

S A B Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1 

1 0 0 0

1 0 1 1

1 1 0 0 

1 1 1 1

Figure 14 : Truth table for
multiplexer function



Digital-Design Levels representations of a multiplexer
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Figure 15 : Gate-level logic diagram for
multiplexer function
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Figure 16 : Logic diagram
for a multiplexer using an
MSI circuit
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