
Combinational Logic Design Principles

Switching algebra

Doru Todinca

Department of Computers and Information Technology

Politehnica University of Timisoara

Outline

Introduction

Switching algebra
Axioms of switching algebra
Theorems of switching algebra
Duality
Standard Representation of Logic Functions

Outline

Introduction

Switching algebra
Axioms of switching algebra
Theorems of switching algebra
Duality
Standard Representation of Logic Functions

Introduction. Definitions

◮ Logic circuits are classified as combinational or sequential

◮ “A combinational circuit is one whose outputs depend only on
its current inputs”

◮ “The outputs of a sequential circuit depend not only on its
current inputs, but also on past sequence of inputs, possible
arbitrarily far back in time” [Wakerly]

◮ A combinational circuit should not contain feedback loops

◮ “A feedback loop is a signal path of a circuit that allows the
output of a gate to propagate back to the input of the same
gate”

◮ In general a feedback loop creates sequential behaviour

◮ “Combinational circuit analysis: we start with a logic diagram
and proceed to a formal description of the function performed
by the circuit such as a truth table or a logic expression”

Definitions

◮ Synthesis is the opposite process, where we start with a
formal description and obtain a logic diagram

◮ Logic design starts with an informal description of the circuit
(in words), from which we obtain first a formal description
and at the end the logic diagram

◮ Hence, logic design includes synthesis

◮ Usually the most difficult and creative part is to obtain a
formal description from the informal description

◮ Once we have the formal description we can use tools for
synthesis, in order to obtain the logic diagram for a target
technology (e.g. FPGA, ASIC, etc)

◮ Combinational circuits can have more than one output, but in
this chapter we discuss only techniques that apply to
combinational circuits with one output

Outline

Introduction

Switching algebra
Axioms of switching algebra
Theorems of switching algebra
Duality
Standard Representation of Logic Functions

Boolean algebra

◮ Boolean, or switching algebra, deals with two truth values:
FALSE and TRUE, or 0 and 1, or LOW and HIGH (signal
voltages)

◮ Created by George Boole in 1854

◮ Claude Shannon (1938): adapted the Boolean algebra to
switching circuits (relays at that time):
◮ A variable expresses the condition of a switching device: closed

(1) or open (0)

◮ Positive logic convention: we associate logic 0 to LOW signal
values and logic 1 to HIGH signal values

◮ Negative logic convention: we associate logic 0 to HIGH
values and logic 1 to LOW values (seldom used)

◮ The choice of positive or negative convention does not affect
the results of boolean algebra

◮ We will use this when we will talk about duality

Switching algebra

◮ A variable denotes the value of a signal: X, Y1, Input1, etc

◮ A literal is a logic variable or its complement: X, X’, Y1’, etc

◮ An expression combines
◮ literals
◮ logic operators: AND (·), OR (+), complementation (’)
◮ and parenthesis

◮ Examples of logic expressions:
◮ (X ′ + Y 1) ·W
◮ ((Y + Z1′) · CS L) · RESET ′

◮ An equation has the form: variable = expression

◮ Examples:
◮ P = (A · B + (C · D))′ + Z1
◮ ((Y + Z1′) · CS L) · RESET ′ = Q0

Outline

Introduction

Switching algebra
Axioms of switching algebra
Theorems of switching algebra
Duality
Standard Representation of Logic Functions

Axioms of switching algebra

Axioms, or postulates, are a minimal set of definitions and
relations that we assume to be true, and from which we can derive
all other relations and informations of a mathematical system

(A1) X = 0 if X 6= 1 (A1’) X = 1 if X 6= 0
(A2) If X = 0, then X ′ = 1 (A2’) If X = 1, then X ′ = 0
(A3) 0 · 0 = 0 (A3’) 1 + 1 = 1
(A4) 1 · 1 = 1 (A4’) 0 + 0 = 0
(A5) 0 · 1 = 1 · 0 = 0 (A5’) 1 + 0 = 0 + 1 = 1

Table 1: Axioms of switching algebra

Axioms of switching algebra

◮ Axioms (A1) and (A1’) formalize the fact that a boolean
variable can take only two values: 0 and 1

◮ Axioms (A2) and (A2’) describe the inverting operator (NOT,
denoted also ’)
◮ The symbol for an inverter with input X and output Y and its

algebraic notation Y = X ′ are given in figure 1
◮ X ′ is an expression, and Y = X ′ is an equation

◮ Axioms (A3)-(A5) describe formally the AND operator, or
logical multiplication, with the symbol multiplication dot (·)

◮ Axioms (A3’)-(A5’) describe formally the OR operator, or
logical addition, symbolized by a plus sign (+)

◮ In a logical expression, multiplication has precedence over

addition

◮ The symbols for AND and OR gates and their algebraic
equations are given in figure 2 (a) and (b)

◮ The five pairs of axioms (A1-A5) and (A1’-A5’) completely
characterize switching algebra

Gates: symbols and algebraic notations

X Y = X′

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 1: Inverter

X

Y
Z = X • Y

X

Y
Z = X + Y

(a) (b)

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 2: (a) AND gate and (b) OR gate

Digital gates and truth tables

(c)

X NOT X

1

0 1

0

NOT XX(a)

X

0

1

X AND YY

0

1

1

0

1

0

0

0

0

1

X AND Y
X

Y (b)

X

0

1

X OR YY

0

1

1

0

1

0

0

1

1

1

X OR Y

X′X • Y X + Y

X

Y

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 3: Fundamental gates and truth tables: (a) for AND gate, (b) for
OR gate, (c) for NOT gate

A gate’s behaviour can be expressed using the truth table (see
figure 3)
The truth tables for NOT, AND and OR gates are equivalent to
the axioms (A2)-(A5) and (A2’)-(A5’)

Outline

Introduction

Switching algebra
Axioms of switching algebra
Theorems of switching algebra
Duality
Standard Representation of Logic Functions

Theorems of switching algebra

◮ Switching algebra theorems are statements that are always
true and that can be obtained from axioms

◮ The theorems are very useful for simplifying algebraic
expressions used for analysis and synthesis of combinational
devices

◮ Most theorems can be proved by induction: either perfect
induction or finite induction
◮ Perfect induction means to prove that the theorem is true for

all possible cases
◮ Finite induction means to prove that the theorem is true for

n = 2 (the basis step) and that, if the theorem is true for
n = i , then it is true for n = i + 1 (induction step)

Single-Variable Theorems

Table 4-1
Switching-algebra
theorems with one
variable.

(T1) X + 0 = X (T1′) X ⋅1 = X (Identities)

(T2) X + 1 = 1 (T2′) X ⋅0 = 0 (Null elements)

(T3) X + X = X (T3′) X ⋅X = X (Idempotency)

(T4) (X′)′ = X (Involution)

(T5) X + X′ = 1 (T5′) X ⋅X′ = 0 (Complements)

Figure 4: Switching algebra theorems with one variable

Single-Variable Theorems

◮ Single variable theorems allow us to simplify algebraic
expression:
◮ For example, to replace X + 0 with X , X + 1 with 1, X + X

with X
◮ Or, to replace X · 1 with X , X · 0 with 0, X · X with X

◮ All can be proved by perfect induction

◮ Proof of (T1). We can have two situations, because X can
have only two values (according to A1 and A1’):

1. If X = 0 (T1) becomes 0 + 0 = 0, which is true, according to
(A4’)

2. If X = 1 (T1) becomes 1 + 0 = 0, true, according to (A5’)

◮ All single variable theorems can be proved in a similar way (at
the lab !)

Two- and Three-Variable Theorems

Table 4-2 Switching-algebra theorems with two or three variables.

(T6) X + Y = Y + X (T6′) X ⋅Y = Y ⋅X (Commutativity)

(T7) (X + Y) + Z = X + (Y + Z) (T7′) (X ⋅Y) ⋅Z = X ⋅(Y ⋅Z) (Associativity)

(T8) X ⋅Y + X ⋅Z = X ⋅(Y + Z) (T8′) (X + Y) ⋅(X + Z) = X + Y ⋅Z (Distributivity)

(T9) X + X ⋅Y = X (T9′) X ⋅(X + Y) = X (Covering)

(T10) X ⋅Y + X ⋅Y′ = X (T10′) (X + Y) ⋅(X + Y') = X (Combining)

(T11) X ⋅Y + X′⋅Z + Y ⋅Z = X ⋅Y + X′⋅Z (Consensus)

(T11′) (X + Y) ⋅(X′ + Z) ⋅(Y + Z) = (X + Y) ⋅(X′+ Z)

Figure 5: Switching algebra theorems with two and three variable

In all theorems it is possible to replace any variable with an
arbitrary logic expression.

Commutativity and Associativity

◮ Commutativity:
◮ T6 and T6’ indicate that we can change the order of therms in

a logical sum or a logical product

◮ Associativity:
◮ Without associativity, an expression like W + X + Y + Z or

W · X · Y · Z is ambiguous
◮ theorems T7 and T7’ indicate that parenthesizetion is not

relevant,
◮ so that we can write W + X + Y + Z instead of

(((W + X) + Y) + Z),
◮ or W · X · Y · Z instead of, e.g., (W · X) · (Y · Z)

◮ Associativity and commutativity tell us that:
◮ We can extend the · and + operators, that have been defined

as binary operators, to any number of variables
◮ That means that we can have AND and OR gates with 2, 3, 4,

8, . . . inputs
◮ We may connect the gates’ inputs in any order

Two- and Three-Variable Theorems: Distributivity

◮ Distributivity:
◮ Theorem T8 looks like distributivity of real and integer number

multiplication over addition
◮ It allows us to “multiply out” expressions in order to obtain a

sum-of-product form:
◮ W · (X + Y + Z) = W · ((X + Y) + Z) =

W · (X + Y) +W · Z = W · X +W · Y +W · Z
◮ Theorem T8’ does not hold for real (or integer) number

addition and multiplication, but in Boolean algebra, logic
addition is distributive over logic multiplication

◮ It means that we can “add out” expressions to obtain the
product-of-sum form:

◮ W + (X · Y · Z) = W + (X · (Y · Z)) =
(W + X) · (W + (Y · Z)) = (W + X) · (W + Y) · (W + Z)

2- and 3-Variable Theorems: Covering and Combining

◮ Both covering and combining theorems are used for
minimization of logic expressions

◮ They can be proved by perfect induction, but also using other
theorems, as follows:

X + X · Y = X · 1 + X · Y (according to T1’)
= X · (1 + Y) (according to T8)
= X · 1 (according to T2)
= X (according to T1’)

Table 2: Proof of covering theorem

X · Y + X · Y ′ = X · (Y + Y ′) (according to T8)
= X · 1 (according to T5)
= X (according to T1’)

Table 3: Proof of combining theorem

The consensus theorem

◮ T11 is called the consensus theorem

◮ The term Y · Z is called the consensus of X · Y and X ′ · Z

◮ The theorem can be proved by perfect induction, or by the
following steps:

1. If Y · Z = 1 then both Y and Z must be 1.
2. It results that either X · Y = 1 or X ′ · Z = 1 (since either X or

X ′ must be 1).
3. That means that from the expression X · Y + X ′ · Z + Y · Z

the term Y · Z can be eliminated
4. Hence, X · Y + X ′ · Z + Y · Z = X · Y + X ′ · Z
5. If Y · Z = 0, then the theorem is obviously true.

◮ Another proof:
X · Y + X ′ · Z + Y · Z = X · Y + X ′ · Z + Y · Z · 1 =
X ·Y +X ′ ·Z +Y ·Z · (X +X ′) = (X ·Y +X ·Y ·Z)+(X ′ ·Z +
X ′ ·Z ·Y) = X ·Y · (1+Z)+X ′ ·Z · (1+Y) = X ·Y +X ′ ·Z

n-Variable Theorems

Table 4-3 Switching-algebra theorems with n variables.

(T12)
(T12′)

X + X + … + X = X
X ⋅X ⋅ … ⋅ X = X

(Generalized idempotency)

(T13)
(T13′)

(X1 ⋅X2 ⋅ … ⋅ Xn)′ = X1′ + X2′+ … + Xn′
(X1 + X2 + … + Xn)′ = X1′ ⋅ X2′ ⋅ … ⋅ Xn′

(DeMorgan's theorems)

(T14) [F(X1,X2, …, Xn, +, ⋅)]′ = F(X1′,X2′, …,Xn′, ⋅, +) (Generalized DeMorgan's theorem)

(T15)
(T15′)

F(X1,X2, …,Xn) = X1 ⋅F(1,X2, …, Xn) + X1′ ⋅ F(0,X2, …,Xn)

F(X1,X2, …,Xn) = [X1 + F(0,X2,…,Xn)] ⋅[X1′ + F(1,X2, …, Xn)]

(Shannon's expansion theorems)

Figure 6: Switching algebra theorems with n variable

◮ The theorems are true for an arbitrary number of variables, n.

◮ Most of them can be proved by finite induction.

◮ DeMorgan’s theorems T13 and T13’ are probably the most
used theorems from switching algebra.

n-Variable Theorems: proof of T12

◮ Proof is by finite induction:

◮ Basis step: for n = 2 the theorem is true, according to T3.

◮ Induction step: suppose that for n = i T12 is true, i.e.
X + X + . . .+ X
︸ ︷︷ ︸

i

= X

◮ We will prove T12 for n = i + 1:

X + X + . . .+ X
︸ ︷︷ ︸

i+1

= X + (X + . . .+ X
︸ ︷︷ ︸

i

)

= X + X (n = i)
= X (according to T3)

Table 4: Proof of generalized idempotency by finite induction

DeMorgan: T13

◮ Theorem T13 says that an n-input AND gate with negated
output is equivalent with an n-input OR gate with negated
inputs

◮ Figure 7 (a) and (b) illustrate this, for n = 2

◮ Figure 7 (c) and (d) show the gates symbols

◮ In 7 (d) the bubbles on the inputs signify that the gate’s
inputs are inverted

◮ Theorem T13’ says that an n-input OR gate with inverted
output is equivalent with an n-input AND gate with inverted
inputs

◮ It is illustrated in figure 8 (a) and (b), while (c) and (d)
contain the gates symbols

DeMorgan: T13

X

Y

X

Y

X

Y

Z = (X • Y)′ Z = (X • Y)′

X′

Y′

X

Y

Z = X′ + Y′

(a) (c)

(b) Z = X′ + Y′(d)

X • Y

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 7: Equivalent circuits for NAND gate, according to DeMorgan’s
theorem T13

DeMorgan: T13’

X

Y

X

Y

X

Y

Z = (X + Y)′ Z = (X + Y)′

X′

Y′

X

Y

Z = X′ • Y′

(a) (c)

(b) Z = X′ • Y′(d)

X + Y

Figure 8: Equivalent circuits for NOR gate, according to DeMorgan’s
theorem T13’

DeMorgan

◮ Theorems T13 and T13’ can be proved by finite induction

◮ The basis step, for n = 2, can be proved by perfect induction

◮ Theorems T13 and T13’ can be used to prove T14, if we
decompose the arbitrary function F in sum of products, and
respectively product of sums and apply recursively T13 and
T13’

◮ We will use another approach: first demonstrate T14 using
duality, then T13 and T13’ will result as particular cases of
T14

◮ In T14, the complement (F)′ of a function F is defined as
being the logic expression whose value is the opposite value of
F, for every possible input combination.

Generalized DeMorgan

◮ Theorem T14 explains how to complement an n-variable logic
expression:
◮ by swapping + and · and complementing all variables

◮ As a result, the uncomplemented variables will be
complemented

◮ And the complemented variables will be uncomplemented
(because of theorem T4, involution: (X ′)′ = X)

◮ Example. Let’s consider the following expression:
◮ F (W ,X ,Y ,Z) = (W ′ + X) · (X + Y) · (W + (X ′ · Z ′))
◮ Applying theorem T14, we will obtain:
◮ [F (W ,X ,Y ,Z)]′ = ((W ′)′·X ′)+(X ′·Y ′)+(W ′·((X ′)′+(Z ′)′))
◮ Using theorem T4 we will have:
◮ [F (W ,X ,Y ,Z)]′ = (W · X ′) + (X ′ · Y ′) + (W ′ · (X + Z))

Outline

Introduction

Switching algebra
Axioms of switching algebra
Theorems of switching algebra
Duality
Standard Representation of Logic Functions

Duality

◮ All axioms of switching algebra are given in pairs

◮ The primed version of an axiom is obtained from the unprimed
version by swapping 0 and 1 and, if present, · and +.

◮ If a theorem can be proved using certain axioms, then the
primed theorem can be also proved (using the primed axioms)

◮ We can give the following metatheorem

◮ Principle of duality : Any theorem or identity in switching
algebra remains true if 0 and 1 are swapped and · and + are
swapped too.

◮ A metatheorem is a theorem about theorems.

◮ We will formally define the dual of a logic expression

Duality

Definition
If F (X1,X2, . . . ,Xn, ·,+,

′) is a fully parenthesized logic expression
involving the variables X1,X2, . . . ,Xn and the operators ·, +, and ′,
then the dual of F , written FD , is the same expression with + and
· swapped:

FD(X1,X2, , . . .Xn, ·,+,

′) = F (X1,X2, . . .Xn,+, ·,′)

Using duality, theorem T14 can be expressed in the following way:

[F (X1,X2, , . . .Xn)]
′ = FD(X ′

1,X
′

2, . . .X
′

n)

Duality: proof of theorem T14

◮ Figure 9 (a) shows the electrical function table of a gate that
we call “type 1” gate

◮ In positive logic, i.e., if we associate 0 to LOW and 1 to
HIGH, it is an AND gate (fig 9 (b))

◮ But in negative logic (LOW=1 and HIGH=0), “type 1” gate
is an OR gate (fig 9 (c))

◮ In the same way we can consider the “type 2” gate from
figure 10, which is an OR gate in positive logic and an AND
gate in negative logic

◮ Obviously, similar tables can be given for gates with any
number of inputs

Duality: proof of theorem T14

Z = X + Y= X • Y Z

X Y Z

X

Y
Z

X Y Z

X

Y

LOW LOW LOW 0 0 0 1 1 1
LOW HIGH LOW 0 1 0 1 0 1
HIGH LOW LOW 1 0 0 0 1 1
HIGH HIGHHIGH 1 11 0 00

X Y Z

X

Y

(a)
type 1

(b) (c)
type 1 type 1

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 9: A “type 1” logic gate: (a) electrical functioning table; logic
function table and symbol in positive logic (b) and negative logic (c)

= X • YZ
(a)

X Y Z

X

Y
Ztype 2

(b)

X Y Z

X

Y

(c)

LOW LOW LOW 0 0 0 1 1 1

LOW HIGH HIGH 0 1 1 1 0 0

HIGH LOW HIGH 1 0 1 0 1 0

0HIGH HIGHHIGH 1 11 0 0

X Y Z

Z = X + Y
X

Y
type 2 type 2

Figure 10: A “type 2” logic gate: (a) electrical functioning table; logic
function table and symbol in positive logic (b) and negative logic (c)

Duality: proof of theorem T14

◮ Suppose we have an arbitrary logic expression
F (X1,X2, . . . ,Xn)

◮ We can build a circuit for this logic expression under the
positive logic convention, using inverters (NOT gates) for
NOT operations, type 1 gates for AND operations and type 2
gates for OR operations

◮ We will obtain the circuit from figure 11

◮ Without changing the circuit, we change the logic convention
and use negative logic

◮ The voltage levels do not change when we change the logic
convention, which means that:
◮ the “type 1” gates will be OR gates and “type 2” gates will be

AND gates
◮ each input will be replaced by its complement
◮ inverters will remain unchanged

◮ We will obtain the circuit from figure 12

Duality: proof of theorem T14

◮ The function realized by the circuit from figure 12 is the dual
of function F , realized by the circuit in positive logic (from
figure 11)

◮ For each combination of input voltages, the circuit from
figures 11 and 12 will produce the same voltage

◮ But, because we use different logic conventions, it means that
the logic values of the circuit from the two figures will be
always complemented.

◮ Which means that

F (X1,X2, , . . .Xn) = [FD(X ′

1,X
′

2, . . .X
′

n)]
′

◮ By complementing both sides, we obtain theorem T14.

Duality: proof of theorem T14

X2

X3

X1

X4

X5

Xn

type 1

type 1

type 1

type 1

type 2

type 2

type 2

F(X1, X2, ... , Xn)

type 2

type 1

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 11: Circuit for a logic function using “type 1” and “type-2” logic
gates in positive logic convention

Duality: proof of theorem T14

X2′
X3′

X1′

X4′

X5′

Xn′

type 1

type 1

type 1

type 1

type 2

type 2

type 2

type 2

type 1 FD(X1′, X2′, ... , Xn′)

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 12: The circuit from figure 11 under negative logic convention

Outline

Introduction

Switching algebra
Axioms of switching algebra
Theorems of switching algebra
Duality
Standard Representation of Logic Functions

Truth table

◮ The truth table is the most basic representation of a logic
function of a combinational circuit

◮ A truth table lists the output of a circuit for all its input
combinations

◮ The order in which we list the input combinations is
traditionally the ascending binary counting order

◮ A truth table for a combinational circuit with n inputs has 2n

rows.

◮ Figure 13 presents the general structure of a truth table for a
circuit with 3 inputs (a three-variable truth table)

◮ With 3 variable a truth table has 23 = 8 rows

◮ Figure 14 presents a truth table for a particular logic 3-input
logic function F.

General truth table

Table 4 -4
General truth table
structure for a
3-variable logic
function, F(X,Y, Z).

Row X Y Z F

0 0 0 0 F(0,0,0)

1 0 0 1 F(0,0,1)

2 0 1 0 F(0,1,0)

3 0 1 1 F(0,1,1)

4 1 0 0 F(1,0,0)

5 1 0 1 F(1,0,1)

6 1 1 0 F(1,1,0)

7 1 1 1 F(1,1,1)

Figure 13: General truth table for a 3-variable logic function

Truth table for a particular logic function

Row X Y Z F Table 4-5
Truth table for a
particular 3-variable
logic function, F(X,Y, Z).

0 0 0 0 1

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 1

5 1 0 1 0

6 1 1 0 1

7 1 1 1 1

Figure 14: The truth table for a particular 3-variable logic function

Standard representations of logic functions: Definitions

◮ A literal is a variable or the complement of a variable.
◮ Examples: X, X’, Y, Y’, RESET.

◮ A product term is a single literal or a logic product of two or
more literals.
◮ Examples: Z ′, W · X · Y , W · X ′ · Y ′ · Z

◮ A sum-of-products expression is a logical sum of product
terms
◮ Examples: W · X · Y +W · X ′ · Y ′ +W ′ · X · Y

◮ A sum term is a single literal or a logical sum of two or more
literals.
◮ Examples: W + X + Y , W ′ + X ′ + Y ′, W + X + Y ′ + Z ′

◮ A product-of-sum expression is a logical product of sum
terms.
◮ Examples: (W + X + Y) · (W ′ + X ′ + Y ′) · (W ′ + X + Y),

Z ′ · (W + X + Y ′ + Z ′)

Standard representations of logic functions: Definitions

◮ A normal term is a product or sum term in which no variable
appears more than once.
◮ A non-normal term can always be simplified to a constant or a

normal term using one of the theorems T3, T3’(idempotency),
T5 or T5’ (complements).

◮ Examples of non-normal terms: W ·X ·X · Z , W ·X ′ ·Y ′ ·W ′,
W +W + X + Y , W +W ′ + Y + Z

◮ Examples of normal terms: W · X ′ · Y ′ · Z , W · X · Y ′ · Z ,
W + X + Y + Z ′, W ′ + X ′ + Y + Z

◮ An n-variable minterm is a normal product term of n literals.
◮ There are 2n such product terms.
◮ Examples of 3-variable minterms: W · X · Y , W ′ · X · Y ′,

W ′ · X ′ · Y ′

◮ Examples of 4-variable minterms: W · X · Y · Z ,
W ′ · X ′ · Y ′ · Z , W ′ · X ′ · Y ′ · Z ′

◮ An n-variable maxterm is a normal sum term of n literals.
◮ Examples of 4-variable maxterms: W + X + Y + Z ,

W ′ + X ′ + Y ′ + Z , W ′ + X ′ + Y ′ + Z ′

Minterms, maxterms and truth tables

◮ In an n-variable minterm (or maxterm), each variable appears
exactly once, in either uncomplemented or complemented form

◮ There is a close correspondence between the truth table and
minterms and maxterms.

◮ A minterm can be defined as a product term that is 1 in
exactly one row of the truth table

◮ A maxterm can be defined as a sum term that is 0 in exactly
one row of the truth table

◮ In figure 15 we can see this correspondence for a 3-variable
truth table.

Minterms and maxterms

Table 4-6
Minterms and maxterms
for a 3-variable logic
function, F(X,Y, Z).

Row X Y Z F Minterm Maxterm

0 0 0 0 F(0,0,0) X′ ⋅ Y′ ⋅ Z′ X + Y + Z
1 0 0 1 F(0,0,1) X′ ⋅ Y′ ⋅ Z X + Y + Z′
2 0 1 0 F(0,1,0) X′ ⋅ Y ⋅Z′ X + Y′ + Z
3 0 1 1 F(0,1,1) X′ ⋅ Y ⋅Z X + Y′ + Z′
4 1 0 0 F(1,0,0) X ⋅Y′ ⋅ Z′ X′ + Y + Z
5 1 0 1 F(1,0,1) X ⋅Y′ ⋅ Z X′ + Y + Z′
6 1 1 0 F(1,1,0) X ⋅Y ⋅Z′ X′ + Y′ + Z
7 1 1 1 F(1,1,1) X ⋅Y ⋅Z X′ + Y′ + Z′

Figure 15: Minterms and maxterms for a 3-variable logic function
F(X,Y,Z)

Minterm and maxterm number

◮ An n-variable minterm can be represented by an n-bit integer,
named the minterm number

◮ The name minterm i will denote the minterm corresponding
to row i of the truth table

◮ In minterm i , a particular variable appears complemented if
the corresponding bit in the binary representation of i is 0,
and uncomplemented, if the corresponding bit in the binary
representation of number i is 1.

◮ Example:
◮ the minterm 5 corresponds to row 5 in table 4-5 from figure 15
◮ the binary representation of number 5 on 3 bits is 101
◮ The corresponding minterm will be X · Y ′ · Z

◮ In maxterm i a variable is complemented if the corresponding
bit in the binary representation of number i is 1 and
uncomplemented if that corresponding bit is 0
◮ Example: maxterm 5 is X ′ + Y + Z ′

Canonical sum, minterm list

◮ The canonical sum of a logic function is the sum of the
minterms corresponding to truth-table rows (input
combinations) for which the function is 1

◮ Example: for the table 4-5 (from figure 14) the canonical sum
is: F =

∑

X ,Y ,Z
(0, 3, 4, 6, 7) =

X ′ · Y ′ · Z ′ + X ′ · Y · Z + X · Y ′ · Z ′ + X · Y · Z ′ + X · Y · Z

◮ The notation
∑

X ,Y ,Z
(0, 3, 4, 6, 7) is a minterm list, meaning

“the sum of minterms 0, 3, 4, 6 and 7 with variables X , Y ,
and Z ”

◮ The minterm list is called also the on-set of the logic function
because each minterm “turns on” the output for exactly one
input combination.

◮ Any logic function can be written as a canonical sum.

Canonical product, maxterm list

◮ The canonical product of a logic function is a product of the
maxterms corresponding to input combinations for which the
function produces a 0 output.

◮ Example: the canonical product for the logic function in Table
4-5 from figure 15 is:
F =

∏

X ,Y ,Z
(1, 2, 5) = (X+Y+Z ′)·(X+Y ′+Z)·(X ′+Y+Z ′)

◮ The notation
∏

X ,Y ,Z
(1, 2, 5) is a maxterm list and means

“the product of maxterms 1, 2, and 5 with variables X , Y ,
and Z”

◮ The maxterm list is known also as the off-set for the logic
function because each maxterm “turns off” the function for
exactly one input combination.

◮ Any logical function can be written as a canonical product.

Minterm list and maxterm list

◮ For a function of n variables, the possible minterm and
maxterm numbers are in the set {0, 1, . . . , 2n − 1}

◮ A minterm list or a maxterm list contain a subset of these
numbers

◮ The minterm list and the maxterm list are complemented

◮ Hence, in order to switch from minterm list to maxterm list
(or vice-versa), take the set complemented.

◮ Examples:
◮

∑

A,B,C
(0, 1, 2, 3) =

∏

A,B,C
(4, 5, 6, 7)

◮
∑

X ,Y
(1) =

∏

X ,Y
(0, 2, 3)

◮
∑

W ,X ,Y ,Z
(0, 1, 2, 3, 5, 7, 11, 13) =

∏

W ,X ,Y ,Z
(4, 6, 8, 9, 10, 12, 14, 15)

Possible representations for a combinational logic function

1. A truth table

2. An algebraic sum of minterms, the canonical sum

3. A minterm list using the
∑

notation

4. An algebraic product of maxterms, the canonical product

5. A maxterm list using the
∏

notation.

All representations are equivalent. Given one of them, we can
obtain all others.

	Introduction
	Switching algebra
	Axioms of switching algebra
	Theorems of switching algebra
	Duality
	Standard Representation of Logic Functions

