
Combinational Logic Design Principles.

Combinational Circuits Analysis and Synthesis

Doru Todinca

Department of Computers

Politehnica University of Timisoara

Outline

Combinational Circuits Analysis

Combinational-Circuit Synthesis
Circuit Descriptions and Designs
Circuit Manipulations
Combinational-Circuit Minimization

Outline

Combinational Circuits Analysis

Combinational-Circuit Synthesis
Circuit Descriptions and Designs
Circuit Manipulations
Combinational-Circuit Minimization

Combinational circuit analysis

◮ By analysis we obtain a description of the logic function,
starting from the circuit diagram

◮ What can we do with this description ?
◮ we can determine the behaviour of the circuit for different

input combinations
◮ we can manipulate the algebraic description in order to obtain

different circuit structures for the same logic function: e.g., to
transform an AND-OR (sum-of-products) description in a
NAND-NAND description, or an OR-AND description in a
NOR-NOR description

◮ we can transform the description in a form suitable for
implementation in an available technology: sum-of-products
for PLA implementation, truth table for a lookup memory used
in FPGAs

Example of a circuit

F

X

Y

Z

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 1: A 3-input, 1-output logic circuit

An “exhaustive” analysis

01100101

01000101

00100000

11001111

01010101

11110000

01010101

00110011 11001100

00110011

10101010

00001111
00001111

F

X

Y

Z

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 2: Gate outputs for all input combinations

◮ We apply all possible input combinations (from 000 to 111),
and compute the values at each gate’s output until we arrive
at the output of the circuit

◮ At the circuit output we have the truth table output (figure 3)

The truth table for the circuit

Row X Y Z F Table 4-7
Truth table for the
logic circuit of
Figure 4-9.

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

Figure 3: Truth table for the circuit from figure 1

F

X

Y
Y′

X + Y′

(X + Y′) • Z

X′

Z′

Z

= ((X + Y′) • Z) + (X′ • Y • Z′)

X′ • Y • Z′

Figure 4: Logic expressions for signal lines

◮ The complexity of the “exhaustive” method grows
exponentially with the number of inputs (there are 2n input
combinations for n inputs)

◮ An easier way is to use an algebraic approach: to build up a
parenthesized logic expression for the circuit

◮ We start with inputs and compute the logic expression at each
gate’s output till we reach the circuit’s output

◮ We can simplify the obtained logic expressions as we go, or at
the end, after we obtain the output expression

F = X • Z + Y′ • Z + X′ • Y • Z′

X

Y

Z

Y′
Y′ • Z

X • Z

X′ • Y • Z′

X′

Z′
Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 5: Two-level AND-OR circuit

If we multiply out the expression of F from figure 4, we obtain a
sum-of-products expression, corresponding to the circuit from
figure 5

X

Y

Z

Y′

Y + Z

X′ + Z

X + Y′ + Z′

X′

Z′

F = (X + Y′ + Z′) • (X′ + Z) • (Y + Z)

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 6: Two-level OR-AND circuit

From the logic expression of F from figure 4 we can obtain a
product-of-sums expression, corresponding to the circuit from
figure 6.
In order to obtain the product-of-sums expression, we use the
relation (a · b) + (c · d) = (a+ c) · (a+ d) · (b + c) · (b + d), that
can be proved using theorem T8’ (distributivity of logic addition
over logic multiplication)

An example with NAND and NOR gates

F

X

W

Y

Z

= [((W • X′)′ • Y)′ + (W′ + X + Y′)′
+ (W + Z)′]′

X′
(W • X′)′

((W • X′)′ • Y)′

(W′ + X + Y′)′

(W + Z)′

W′

Y′

Figure 7: Algebraic analysis of a logic circuit with NAND and NOR gates

Here we have another example of circuit diagram, with NAND and
NOR gates, and the logic expression of circuit’s output F .

Applying graphically DeMorgan’s theorems

F

X

W

Y

Z

= ((W′ + X) • Y) • (W′ + X + Y′)
• (W + Z)

X′
W′ + X

((W′ + X) • Y)′

(W′ + X + Y′)′

(W + Z)′

W′

Y′

Figure 8: Algebraic analysis of the previous circuit after substituting some
NAND and NOR gates

We can apply DeMorgan’s theorem graphically (here by replacing
the last gate symbol with an equivalent symbol) and obtain figure
8, which is the same circuit as that from figure 7.

A different circuit for the same logic function

F

X

W

Y

Z

= ((W′ + X) • Y) • (W′ + X + Y′)
• (W + Z)

X′
W′ + X

(W′ + X) • Y

W′ + X + Y′

W + Z

W′

Y′

Figure 9: A different circuit for the same logic function

We can process the output function algebraically:
F = [((W · X ′)′ · Y)′ + (W ′ + X + Y ′)′ + (W + Z)′]′

If we start from the last inversion and apply DeMorgan, we obtain:
F = ((W · X ′)′ · Y) · (W ′ + X + Y ′) · (W + Z) =
((W ′ + X) · Y) · (W ′ + X + Y ′) · (W + Z)
The circuit from figure 9 corresponds to this expression of F . It is
a different circuit from that from figures 7 and 8.

Another example: three circuits for the same logic function

W
X

Y

Z

G

(a) (b)

(c)

W
X

Y

Z

G

G
W

X

Y

Z

Y′

W • X • Y

W • X • Y

(W • X • Y)′

(W • X)′

(Y • Z)′Y • Z

Y • Z
Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 10: Three circuits for G (W ,X ,Y ,Z) = W · X · Y + Y · Z : (a)
two-level AND-OR; (b) two-level NAND-NAND; (c) with two-input gates
only

Sometimes structural information can be obtained from logical
description, like in this figure.

Outline

Combinational Circuits Analysis

Combinational-Circuit Synthesis
Circuit Descriptions and Designs
Circuit Manipulations
Combinational-Circuit Minimization

Combinational-Circuit Synthesis: Introduction

◮ Usually the starting point for the combinational circuit design
is a word description (given or developed by ourselves)

◮ We can translate this word description in a HDL (see the
high-level description of the multiplexer in VHDL)

◮ Then the HDL tools can realize an automatic synthesis of the
circuit

◮ However, it is important for us to be able to synthesize
(combinational) circuits by hand for the following reasons:
◮ sometimes the circuit obtained by automatic synthesis simply

isn’t good enough: e.g., for critical parts of a design, like
certain parts from a microprocessor

◮ sometimes the automatic tool “runs amok” and obtain a very
poor result

◮ Hence, it is important to be able at least to evaluate the result
of the synthesis process and, if the performance of the
obtained circuit is not good enough, to improve it

Outline

Combinational Circuits Analysis

Combinational-Circuit Synthesis
Circuit Descriptions and Designs
Circuit Manipulations
Combinational-Circuit Minimization

Circuit Descriptions

1. Sometimes the description of a circuit is a list of input
combinations for which the output should be on (or off).
◮ This is a verbal description of the minterm (maxterm) list

using
∑

(
∏
), notations, or of the canonical sum (product)

◮ Example: the description of a 4-bit prime-number detector

2. More often we describe a logic function in words, using
connectives “and”, “or” and “not”
◮ See the alarm example
◮ Definition: A circuit realizes (i.e., makes real) an expression if

its output function equals the expression, and the circuit is
called a realization of the function.

3. Sometimes we prefer to use the truth table:
◮ usually when the word description is imprecise, in the sense

that it is incomplete and we need to use our knowledge of the
problem (e.g. in order to eliminate some impossible
combinations of inputs)

Circuit Descriptions

1. The prime-number detector (figure 11):
◮ The description of a 4-bit prime-number detector can be:

“Given a 4-bit number combination N = N3N2N1N0, produce
a 1 output for N = 1, 2, 3, 5, 7, 11, 13, and 0 otherwise”

◮ The output function is
F =

∑
N3,N2,N1,N0(1, 2, 3, 5, 7, 11, 13) =

N ′

3 ·N
′

2 ·N
′

1 ·N0 +N ′

3 ·N
′

2 ·N1 ·N0 +N ′

3 ·N2 ·N
′

1 ·N0 +N ′

3 ·N2 ·

N1 · N0 + N3 · N
′

2 · N1 · N0 + N3 · N2 · N
′

1 · N0

2. The alarm circuit (figure 12):
◮ Description in words: “the ALARM output is 1 if the PANIC

input is 1, or if the ENABLE input is 1, the EXITING input is
0 and the house is not secure

◮ The house is secure if the WINDOW, DOOR, and GARAGE
inputs are all 1”

◮ Translation into algebraic expression:
ALARM = PANIC + ENABLE · EXITING ′

· SECURE ′

◮ SECURE = WINDOW · DOOR · GARAGE
◮ We defined the auxiliary variable SECURE

N 3

N3

N3′

N3′ • N2′ • N1′ • N0

N3′ • N2′ • N1 • N0′

N3′ • N2′ • N1 • N0

N3′ • N2 • N1′ • N0

N3′ • N2 • N1 • N0

N3 • N2′ • N1 • N0

N3 • N2 • N1′ • N0

N2

N2′

N1

N1′

N0

N0′

N 2

N 1

N 0

F

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 11: Canonical sum design for 4-bit prime-number detector

PANIC
ALARM

ENABLE

EXITING

WINDOW

DOOR

GARAGE

SECURE
Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 12: Alarm circuit derived from logic expression

The output function of the alarm circuit is: ALARM =
PANIC + ENABLE · EXITING ′

· (WINDOW · DOOR · GARAGE)′

We can multiply out this expression to obtain the sum-of-products
circuit (fig 13)

PANIC

ALARM

ENABLE

EXITING

WINDOW

DOOR

GARAGE

 = PANIC
+ ENABLE • EXITING′ • WINDOW′
+ ENABLE • EXITING′ • DOOR′
+ ENABLE • EXITING′ • GARAGE′

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 13: Sum-of-products version of alarm circuit

Outline

Combinational Circuits Analysis

Combinational-Circuit Synthesis
Circuit Descriptions and Designs
Circuit Manipulations
Combinational-Circuit Minimization

Circuit Manipulation

◮ Remember that NAND and NOR gates are faster (and
cheaper) that AND and OR gates in many technologies (e.g.
CMOS, TTL)

◮ However, usually we describe a problem in a “natural” way
using propositions with AND and OR, not with NAND and
NOR

◮ It means that sometimes we obtain a circuit diagram with
AND and OR gates, and want to transform it with NAND and
NOR gates

◮ Figure 14 gives such an example of transformation, starting
from a sum-of-products form

◮ In figure 14 the inverters needed to complement the inputs are
not shown.

Sum-of-products realizations: from AND-OR to

NAND-NAND

(c)

(a)(b)

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 14: Alternative sum-of-products realizations: (a) AND-OR; (b)
AND-OR with extra inverter pairs; (c) NAND-NAND

Transformation of a circuit from AND-OR to

NAND-NAND form

1. Obtain the sum-of-products expression by “multiplying out”
the given logic expression

2. Represent the circuit diagram for the sum-of-products
expression. We obtain a two-level AND-OR circuit.

3. Insert (graphically) a pair of inverters between AND gates’
outputs and the corresponding OR gates’ inputs
◮ According to theorem T4, involution ((X ′)′ = X) the inserted

inverters do not affect the output expression of the circuit

4. The first level of inserted inverters are absorbed into the
outputs of the AND gates, obtaining NAND gates on the first
level of gates

5. On the last level of gates we will obtain NOT-OR gates,
which are actually different symbols for NAND gates.

Transformation of a circuit from AND-OR to

NAND-NAND form

In conclusion, a two-level AND-OR gate circuit can be
converted to a two level NAND-NAND circuit by simply
substituting gate symbols (AND with NAND and OR with
NAND).

If there are product terms (in the sum-of-products) that contain
only one literal, then we may gain or lose inverters in the
transformations (see fig 15, inputs W and Z).

(a)
W

X

Y

Z

(c) W

X

Y

Z

(b)
W

X

Y

Z

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 15: Another two-level sum-of-product circuit: (a) AND-OR; (b)
AND-OR with extra inverter pairs; (c) NAND-NAND

Product-of-sums realizations: from OR-AND to NOR-NOR

◮ A similar approach can be taken for a product-of-sum
realization of a circuit:

1. First, obtain the product-of-sums expression and the
corresponding two-level OR-AND circuit

2. Insert two levels of inverters between the outputs of the OR
gates from the first level and the corresponding inputs of the
AND gates from the second level

3. Replace the OR-NOT with NOR symbols and the NOT-AND
with NOR symbols

4. Pay attention to sum terms consisting of a single literal, that
may gain or lose inverters

◮ Figure 17 illustrates this case.

Product-of-sums realizations: from OR-AND to NOR-NOR

(a) (b)

(c)Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 16: Realization of a product-of-sums expression: (a) OR-AND; (b)
OR-AND with extra inverter pairs; (c) NOR-NOR

The general case of a two-level circuit with AND and OR

gates

◮ We can apply the same method for any two-levels circuit
consisting of AND and OR gates, and transform it into a
circuit with NAND and NOR gates

◮ Figure 17 (a) shows the original circuit

◮ Figure 17 (b) presents the circuit after the insertion of
two-levels of inverters (only inverting bubbles are shown on
the figure)

◮ After this step we can obtain non-standard gates (e.g. a gate
with some inputs inverted and some inputs non-inverted).

◮ Figure 17 (c) and (d) solve the problem of the non-standard
gate, by inserting another inverter

◮ Solution from (d) is better than in (c) because fig (c) adds a
supplementary level of gate delay

The general case of a two-level circuit with AND and OR

gates
(a) (b)

(d)(c)

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 17: Logic symbol manipulation: (a) original circuit; (b)
transformation with a nonstandard gate; (c) inverter used to eliminate
the nonstandard gate; (d) preferred inverter placement

Outline

Combinational Circuits Analysis

Combinational-Circuit Synthesis
Circuit Descriptions and Designs
Circuit Manipulations
Combinational-Circuit Minimization

Combinational-Circuit Minimization

◮ Minimization of a combinational circuit means the reduction
of the number and size of gates that are needed to build the
circuit.

◮ The methods presented here start from the truth table or a
minterm list or a maxterm list.

◮ If the circuit is not described in one of these ways, we must
bring the logic function that described the circuit to one of
these forms.

◮ The minimization methods reduce the cost of a two-level
AND-OR, OR-AND, NAND-NAND or NOR-NOR circuit in
three ways:

1. By minimizing the number of first-level gates
2. By minimizing the number of inputs of the first-level gates
3. By minimizing the number of inputs of the second-level gates.

This is a consequence of the reduction of the number of
first-level gates.

Combinational-Circuit Minimization

◮ The minimization methods assume that both true and
complemented inputs are available (they do not consider the
cost of input inverters).

◮ In some technologies (e.g. PLDs) inputs are available in both
true and complemented form, but in other technologies they
are not (e.g. in ASICs)

◮ Minimizations are based on a generalization of combining
theorems (T10 and T10’):
◮ given product term · Y + given product term · Y ′ =

given product term
◮ (given sum term + Y) · (given sum term + Y ′) =

given sum term

◮ In words: if two product or sum terms differ only in the
complementing or not of one variable, then we can combine
them into a single term without that variable

Combinational-Circuit Minimization

◮ If we try a minimization on the 4 bit prime-number detector
circuit by applying repeatedly this method we can obtain the
circuit from figure 18

◮ Starting from function F =
∑

N3,N2,N1,N0
(1, 3, 5, 7, 2, 11, 13),

we combine minterms 1, 3, 5 and 7 to obtain the function
realized by the circuit from figure 18.

◮ The obtained circuit has 3 fewer gates and one of the input
gates has 2 fewer inputs.

◮ However, if the algebraic expression that described the circuit
is quite complex, this method does not guaranty “the best”
solution (minimization)

◮ Hence, we will use the Karnaugh maps for minimization of
logic functions

N3

N2

N1

N0

F

N3 N3′ N2 N2′ N1 N1′ N0 N0′

N3′ • N0

N3′ • N2′ • N1 • N0′

N3 • N2′ • N1 • N0

N3 • N2 • N1′ • N0

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 18: Simplified sum-of-products realization for 4-bit prime-number
detector

	Combinational Circuits Analysis
	Combinational-Circuit Synthesis
	Circuit Descriptions and Designs
	Circuit Manipulations
	Combinational-Circuit Minimization

