
Combinational Logic Design Principles.

Combinational Circuits Synthesis Using Karnaugh

Maps

Doru Todinca

Department of Computers

Politehnica University of Timisoara

Outline

Combinational-Circuit Synthesis
Karnaugh Maps
Minimizing Sums of Products
Karnaugh Maps for Five and Six Variables Logic Functions
“Don’t Care” Input Combinations
Simplifying Product of Sums

Timing Hazards
Static Hazards
Finding Static Hazards Using Maps
Dynamic Hazards

Outline

Combinational-Circuit Synthesis
Karnaugh Maps
Minimizing Sums of Products
Karnaugh Maps for Five and Six Variables Logic Functions
“Don’t Care” Input Combinations
Simplifying Product of Sums

Timing Hazards
Static Hazards
Finding Static Hazards Using Maps
Dynamic Hazards

Outline

Combinational-Circuit Synthesis
Karnaugh Maps
Minimizing Sums of Products
Karnaugh Maps for Five and Six Variables Logic Functions
“Don’t Care” Input Combinations
Simplifying Product of Sums

Timing Hazards
Static Hazards
Finding Static Hazards Using Maps
Dynamic Hazards

Karnaugh Maps

◮ A Karnaugh map is a graphical representation of the truth
table of a logic function.

◮ Figure 1 presents Karnaugh maps for functions of two (a),
three (b) and four variables (c).

◮ The Karnaugh map of an n-input logic function is an array
containing 2n cells, one cell for each input combination
(minterm).

◮ The rows and columns of a Karnaugh map are labeled so that
the input combination for each cell can be determined from
the row and column headings of that cell.

◮ The small number inside each cell is the corresponding row
number (minterm number) in the truth table, assuming that
the truth table inputs are labeled alphabetically from left to
right (e.g. W, X, Y, Z), and that the rows are numbered in
binary ascending order.

◮ For example, in a 4-variable map (fig 1 (c)), cell number 13
corresponds to the table row in which WXYZ = 1101, cell 7 to
the table row WXYZ = 0111 and so on

Karnaugh Maps

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

(a) (b) (c)

0

1

2

3

6

7

4

5

00 01 11 10

X Y

Z

0

1

X

Y

Z

0

1

2

3

0 1

X

Y

0

1

X

Y

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 1 : Karnaug maps: (a) 2-variable; (b) 3-variable; (c) 4-variable

Karnaugh Maps

◮ Each cell from the map contains the output of the function
that corresponds to that input combination (to that table row)

◮ We use two redundant labeling for rows and columns (see for
example the 4-variable map from figure 1 (c)):

1. The columns are numbered with the four possible
combinations of W and X , and the rows with the four
combinations of Y and Z : 00, 01, 11 and 10.

2. We use also brackets to associate four regions of the map, one
region for each variable, indicating where the variable is 1.

◮ The columns and rows numbering give all information we
need, and so do the brackets, but we use both of them.

◮ To represent a logic function on a Karnaugh map we copy the
1s and 0s from the truth table (or one of the other equivalent
representations of a truth table)

◮ Figure 2 shows the truth table and the Karnaugh map for the
3-variable function given in table 4.7.

◮ In figure 2 (c) we copied only the 1s from the truth table.
◮ In general we will copy either the 1s, or the 0s, not both.

Karnaugh Maps for Logic Functions: Example 1

1

1 1 1

00 01 11 10

X Y

0

X

Y

Z1

Z

(c)(b)(a)

0

1

2

3

6

7

4

5

00 01 11 10

X Y

0

1

X

Y

Z

0 1 0 0

1 0 1 1

Z

X Y Z F

0 0 0 0
10 0 1

0 1 0 1
00 1 1

1 0 0 0
11 0 1

1 1 0 0
11 1 1

X • Z

Y′ • Z

X′ • Y • Z′

Figure 2 : F =
∑

X ,Y ,Z
(1, 2, 5, 7); (a) truth table; (b) Karnaugh map;

(c) combining adjacent 1-cells

Minimizing with Karnaugh maps

◮ Ordering of rows and columns in Karnaugh maps is quite
unusual: 00, 01, 11, 10 (not 00, 01, 10, 11)

◮ This is because “each cell corresponds to an input
combination that differs from each of its immediately adjacent
neighbors in only one variable”

◮ Note that cells from the left/right and top/bottom borders
(edges) are also neighbors.

◮ Examples: cells 1 and 5 from figure 2 are neighbors that differ
only in variable X , cells 7 and 5 differ only in variable Y .

◮ Minimization is based on theorem T10 generalized:
term · Y + term · Y ′ = term:

◮ From two adjacent cells that both contain 1 values we can
eliminate the variable that changes value.

Minimizing with Karnaugh maps

Example 1:

◮ From neighboring cells 1 and 5, which both contain 1, we can
write: X ′ · Y ′ · Z + X · Y ′ · Z = Y ′ · Z (̇X + X ′) = Y ′ · Z

◮ From neighboring cells 7 and 5 that both contain 1, we have:
X · Y · Z + X · Y ′ · Z = X · Z

◮ The 1 from cell number 2 has no other 1s as neighbors. Its
expression is X ′ · Y · Z ′

◮ It results that the function F can be expressed as:
F =

∑
X ,Y ,Z

(1, 2, 5, 7) = X · Z + Y ′ · Z + X ′ · Y · Z ′, and its
realization is given in figure 3

F

X

Y

Z

Y′

X′

Z′

X • Z

Y′ • Z

X′ • Y • Z′

Figure 3 : Minimized AND-OR circuit

Outline

Combinational-Circuit Synthesis
Karnaugh Maps
Minimizing Sums of Products
Karnaugh Maps for Five and Six Variables Logic Functions
“Don’t Care” Input Combinations
Simplifying Product of Sums

Timing Hazards
Static Hazards
Finding Static Hazards Using Maps
Dynamic Hazards

◮ In general we can simplify a logic function by first combining
pairs of adjacent cells that contain a 1 inside (we call them
1-cells)

◮ We circle the pair of 1-cells to indicate that the corresponding
minterms are added, resulting a single product term

◮ We want to select a set of product terms that cover all 1s
from the Karnaugh map.

◮ In example 1 (figure 2) we circled only pairs of 1s, but we can
extend the procedure, i.e., to combine more than 2 minterms
in a product term

◮ Next step would be to combine (if possible) two neighboring
product terms that have been obtained by combining pairs of
minterms

◮ Hence we have a set of 4 minterms

◮ If we continue the procedure, it results that the number of
cells (minterms) combined will be always a power of 2

Example 2

◮ In example 2 from figure 4, the function to minimize is
F =

∑
X ,Y ,Z

(0, 1, 4, 5, 6)

◮ If we work the function algebraically we have:
F = X ′ ·Y ′ ·Z ′+X ′ ·Y ′ ·Z +X ·Y ′ ·Z ′+X ·Y ′ ·Z +X ·Y ·Z ′ =
(X ′ ·Y ′ ·Z ′+X ′ ·Y ′ ·Z)+(X ·Y ′ ·Z ′+X ·Y ′ ·Z)+X ·Y ·Z ′ =
(X ′ · Y ′ · (Z ′ + Z)) + (X · Y ′ · (Z ′ + Z)) + X · Y · Z ′ =
X ′ ·Y ′ +X ·Y ′ +X ·Y ·Z ′ = (X ′ ·Y ′ +X ·Y ′) +X ·Y · Z ′ =
Y ′ · (X ′ + X) + X · Y · Z ′ = Y ′ + X · Y · Z ′

Example 2
◮ Using Karnaugh maps, we first combine pairs of minterms:

1. from cells 0 and 1, i.e. minterms : X ′ · Y ′ · Z ′ and X ′ · Y ′ · Z ,
which give:
X ′ · Y ′ · Z ′ + X ′ · Y ′ · Z = X ′ · Y ′ · (Z + Z ′) = X ′ · Y ′

2. from cells 4 and 5, we have: X · Y ′ · Z ′ + X · Y ′ · Z = X · Y ′

3. from cells 4 and 6 we have:
X · Y ′ · Z ′ + X · Y · Z ′ = X · Z ′ · (Y + Y ′) = X · Z ′

◮ In step 2 we combine product terms 1 and 2 obtained in step
1 (which incorporate now the cells 0, 1, 4 and 5) and we have:
X ′ · Y ′ + X · Y ′ = (X + X ′) · Y ′ = Y ′

◮ We cannot combine product term 3 with other product terms.
◮ It follows that the minimized expression of function

F =
∑

X ,Y ,Z
(0, 1, 4, 5, 6) is F = Y ′ + X · Z ′

◮ Compared with algebraic processing, the function obtained
using Karnaugh map has one less literal, which means a
cheaper implementation

◮ We added the minterm 4 twice, but this is ok, because
1 + 1 = 1

Example 2

Z′

1

00 01 11 10
X Y

Z

X

Y

1 1

1 1

Y′

X • Z′

X

Z

Y
Y′

(a)

(c)

(b)
0

1 Z

0

1

2

3

6

7

4

5

00 01 11 10

X Y

Z

0

1

X

Y

Z

1

1 1

1 1

F = X • Z′ + Y′

X • Z′

Figure 4 : F =
∑

X ,Y ,Z
(0, 1, 4, 5, 6); (a) initial Karnaugh map; (b)

Karnaugh map with circled product terms; (c) AND/OR circuit

Minimizing with Karnaugh Maps: Rules

Rule for combining 1-cells and forming product term: A set of
2i cells containing 1 may be combined if there are i variable of the
logic function that take all the 2i possible combinations in the set,
and the remaining n − i variables do not change values within the
set. The resulting product term has n − i literals. A variable will
appear complemented in the resulting product term if it takes the
value 0 in all cells within the set, and uncomplemented if it takes
the value 1 in all the cells from the set.

Minimizing with Karnaugh Maps: Rules

Graphic representation of the rule:

◮ Circle rectangular sets of 2i 1-cells, including rectangles that
wraparound at the edges of the map.

◮ For each variable use the following rules:
◮ If the circle covers an area where the variable takes only the

value 0, then the variable appears complemented in the
product term

◮ If the circle covers an area where the variable takes only the
value 1, then the variable will be uncomplemented in the
product term

◮ If the circle covers an area where the variable takes both the
value 0 and the value 1, then the variable will not appear in
the product term

◮ A sum of products expression for a function must

contain product terms that cover all the cells where the

function takes the value 1 and none of the cells where

the function takes the value 0.

Definitions

Definition
A minimal sum of a logic function F (X1, . . . ,Xn) is a sum of
products expression for F such that no sum-of-products expression
for F has fewer product terms, and any sum-of-products expression
with the same number of product terms has at least as many
literals.

According to the criteria for combinational-circuit minimization, a
minimal sum will realize a minimal circuit because:

1. The minimal sum has the fewest possible product terms,
which means fewest possible first-level gates and second
level-gates inputs

2. Within previous condition (fewest possible product terms), it
has the fewest possible literals, meaning the fewest possible
first-level gate inputs

Example 3: Prime-number detector

In figure 5 we minimze the prime-number detector using Karnaugh
maps.

The resulting circuit is the only circuit, among those obtained for
the 4-bits prime-number detector problem, that realizes a minimal
sum.

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

N3 N2

N1 N0

00

1 1 1

111

1

01

11

10

N3

N2

N1

N0

N3 N2

N1 N0

N3

N2

N1

N0

(a)

(c)

00 01 11 10

00

1 1 1

11 1

1

01

10

(b)

F = ΣN3,N2,N1,N0(1,2,3,5,7,11,13) F = N3′ • N0 + N3′ • N2′ • N1 + N2′ • N1 • N0 + N2 • N1′ • N0

11

N3

N2

N1

N0

F

N2 • N1′ • N0

N2 • N1′ • N0

N2′ • N1 • N0

N2′ • N1 • N0

N3′ • N2′ • N1

N3′ • N2′ • N1

N3′ • N0

N3′ • N0

N3′

N2

N2′

N1

N1′

N0
Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 5 : Prime-number detector; (a) initial Karnaugh map; (b) circled
product terms; (c) minimized circuit

More Definitions

Definition
A logic function P(X1, . . . ,Xn) implies a logic function
F (X1, . . . ,Xn) if for every input combination such that P = 1,
then F = 1 also.

In other words, if P implies F , then F = 1 for every input
combination for which P = 1 and possible for more input
combinations.

Notation: P ⇒ F .

We may say also that “F includes P” or “F covers P”

More Definitions: Prime Implicant

Definition
A prime implicant of a logic function F (X1, . . . ,Xn) is a normal
product term P(X1, . . . ,Xn) that implies F , such that if any
variable is removed from P , then the resulting product term does
not imply F .

In terms of Karnaugh maps, a prime implicant is a circled set of
1-cells satisfying the combining rule, that cannot be extended (i.e.,
make it cover twice as many cells) without covering one or more 0s.
In the definition, removing a variable from the prime implicant
means trying to make the prime implicant larger (to double the
number of covered cells).

Prime-Implicant Theorem

Tells us when to stop when we want to find a minimal sum of a
logic function.

Theorem
Prime-Implicant Theorem: A minimal sum is a sum of prime

implicants.

It means that, when trying to find a minimal sum, we do not need
to consider product terms that are not prime implicants.
Proof of the Prime-Implicant Theorem: by contradiction.

◮ Suppose that a product term P in a “minimal” sum is not a
prime implicant.

◮ According to the definition of a prime implicant, if P is not 1,
we can remove some literals from P and obtain a product
term P∗ that still implies F .

◮ Replacing P with P∗ in the “minimal” sum, the resulting sum
has one fewer literal and still equals F .

◮ Which means that the “minimal” sum was not minimal.

Example 4

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00 1

1 1

1 1

1

01

11

10

W

X

Y

Z

(a)

00 01 11 10

W X

Y Z

00 1

1 1

1 1

1

01

11

10

W

X

Y

Z

(b)

F = ΣW,X,Y,Z(5,7,12,13,14,15) F = X • Z + W • X

W • X

X • Z

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 6 : F =
∑

W ,X ,Y ,Z
(5, 7, 12, 13, 14, 15) (a) Karnaugh map; (b)

prime implicants

Another example of minimization. There are only 2 prime
implicants, the minimal sum includes both of them in order to
cover all 1-cells.

Example 5: Complete Sum and Minimal Sum

◮ The sum of all prime implicants is called the complete sum.

◮ The complete sum is a realization of a function, but it is not
necessarily a minimal sum.

◮ The logic function from example 5, figure 7 has 5 prime
implicants: X · Y ′, X ′ · Z , W · X , W · Z , Y ′ · Z

◮ The minimal sum includes only the first three of them:
F = X · Y ′ + X ′ · Z +W · X

◮ We need a systematic way to determine which prime
implicants to include in the minimal sum and which to leave
out.

◮ First, we need two more definitions: distinguished 1-cells and
essential prime implicants.

Example 5

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

1

1 1

1 1 1

1 1

1

1

01

11

10

W

X

Y

Z

00 01 11 10

W X

Y Z

00 1 1

1 1 1

1

1 11

1

10

W

X

Y

Z

X

(a) (b)

01

11

F = ΣW,X,Y,Z(1,3,4,5,9,11,12,13,14,15) F = X • Y′ + X′ • Z + W • X

Y′ • Z

X • Y′

W • Z

X′ • Z

W • X

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 7 : F =
∑

W ,X ,Y ,Z
(1, 3, 4, 5, 9, 11, 12, 13, 14, 15) (a) Karnaugh

map; (b) prime implicants and distinguished 1-cells

Essential Prime Implicants: Definitions

Definition
A distinguished 1-cell of a logic function is an input combination
that is covered by only one prime imlicant.

Definition
An essential prime implicant is a prime implicant that covers one
or more distinguished 1-cells.

In figure 7 the distinguished 1-cells are shadowed and the essential
prime implicants are circled with heavier lines.

Essential Prime Implicants

Procedure for selecting the prime implicants for a minimal sum:

◮ Since an essential prime implicant is the only prime implicant
that covers some cells, it must be included in the minimal
sum.

◮ Step 1: Identify all distinguished 1-cells and the corresponding
essential prime implicants and include them in the minimal
sum.

◮ Step 2: Cover the remaining 1-cells (if any), that were not
covered by essential prime implicants.

◮ In example 5 from figure 7 all 1-cells are covered by essential
prime implicants, hence we stop here.

Example 6

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00 1

1 1

1

1

1 1

1

1

01

11

10

W

X

Y

Z

00 01 11 10

W X

Y Z

00 1

1 1

1

1

1 1

1

1

01

11

10

W

X

Y

Z

X

(a) (b)

F = ΣW,X,Y,Z(2,3,4,5,6,7,11,13,15) F = W′ • Y + W′ • X + X • Z + Y • Z

W′ • X

W′ • Y

X • Z

Y • Z

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 8 : F =
∑

W ,X ,Y ,Z
(2, 3, 4, 5, 6, 7, 11, 13, 15) (a) Karnaugh map;

(b) prime implicants and distinguished 1-cells

In figure 8 it is another example where all of the 1-cells are covered
by essential prime implicants.

Example 7

◮ A logic function where not all the 1-cells are covered by
essential prime implicants is given in example 7, figure 9

◮ After removing the essential prime implicants and the 1-cells
covered by them, we obtain a reduced map.

◮ In this example the reduced map contains only one 1-cell, that
is covered by two prime-implicants: W ′ · Z and X · Y · Z

◮ We chose W ′ · Z because it has a lower cost (fewer inputs).

◮ In general, for more complex cases, we need one more
definition.

Example 7

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00 1

1 1

1

1

1

1

1

1

01

11

10

W

X

Y

Z

00 01 11 10

W X

Y Z

00 1 1

1 1

1

1

1

1

1

01

11

10

W

X

Y

Z

X

(b)(a)
00 01 11 10

W X

Y Z

00

1

01

11

10

W

X

Y

Z

X

W′ • Z

(c)

F = W′ • Y′ + W′ • X′ + W • X • Y + W′ • Z F = ΣW,X,Y,Z(0,1,2,3,4,5,7,14,15)

W • X • Y

X • Y • Z
W′ • X′

W′ • Y′

Figure 9 : F =
∑

W ,X ,Y ,Z
(0, 1, 2, 3, 4, 5, 7, 14, 15) (a) Karnaugh map;

(b) prime implicants and distinguished 1-cells; (c) reduced map after
removal of essential prime implicants and covered 1-cells

Definitions for Reduced Maps

Definition
Given two prime implicants P and Q in a reduced map, P is said
to eclipse Q (written P ⊇ Q) if P covers at least all the 1-cells
covered by Q.

If P costs no more than Q and eclipses Q, then P is at least as
good as Q and we can remove Q from consideration from finding a
minimal sum
An example of eclipsing is given in example 8 from figure 10:

◮ After removing the essential prime implicants, two 1-cells
remain.

◮ Each of them is covered by two prime implicants.

◮ The prime implicant X · Y · Z eclipses the other two prime
implicants, which can then be removed from consideration

◮ We must include the secondary essential prime implicant

X · Y · Z in the minimal sum, because it covers both 1-cells
remained in the reduced map.

Example 8

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10
W X

Y Z

00

1

1

1

1

1

1

01

11

10

W

X

Y

Z

00 01 11 10

W X

Y Z

00

1 1

1

1

1

1

01

11

10

W

X

Y

Z

X X

(b)(a)
00 01 11 10

W X

Y Z

00

1 1

01

11

10

W

Y

Z

(c)

F = W • Y′ • Z + W′ • Y • Z′ + X • Y • ZF = ΣW,X,Y,Z(2,6,7,9,13,15)

W • X • Z

X • Y • Z

W′ • X • Y

W • Y′ • Z

W′ • Y • Z′

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 10 : F =
∑

W ,X ,Y ,Z
(2, 6, 7, 9, 13, 15) (a) Karnaugh map; (b)

prime implicants and distinguished 1-cells; (c) reduced map after removal
of essential prime implicants and covered 1-cells

Example 9

◮ A more difficult case is shown in example 9, figure 11.

◮ The logic function F =
∑

W ,X ,Y ,Z
(1, 5, 7, 9, 11, 15) has no

essential prime implicants.

◮ By trial and error we can find two different minimal sums for
this function:

1. F = X ′ · Y ′ · Z +W ′ · X · Z +W · Y · Z

2. F = W ′ · Y ′ · Z +W · X ′ · Z + X · Y · Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

1 1

1

1

1 1

01

11

10

W

X

Y

Z

00 01 11 10

W X

Y Z

00

1 1

1

1

1 111

10

W

X

Y

Z

(a)

(c) (d)

01

00 01 11 10

W X

Y Z

00

1 1

1

1

1 111

10

W

X

Y

Z

(b)

01

00 01 11 10

W X

Y Z

00

1 1

1

1

1 111

10

W

X

Y

Z
01

F = W′ • X • Z + W • Y • Z + X′ • Y′ • Z F = X • Y • Z + W • X′ • Z + W′ • Y′ • Z

W • Y • Z

W′ • X • Z

X′ • Y′ • Z

X • Y • Z

W′ • Y′ • Z

W • X′ • Z

Figure 11 : Example 9: F =
∑

W ,X ,Y ,Z
(1, 5, 7, 9, 11, 15) (a) Karnaugh

map; (b) prime implicants; (c) a minimal sum; (d) another minimal sum

Outline

Combinational-Circuit Synthesis
Karnaugh Maps
Minimizing Sums of Products
Karnaugh Maps for Five and Six Variables Logic Functions
“Don’t Care” Input Combinations
Simplifying Product of Sums

Timing Hazards
Static Hazards
Finding Static Hazards Using Maps
Dynamic Hazards

Karnaugh Maps for Five and Six-Variable Logic Functions

◮ A Karnaugh map for a 5-variable logic function can be drawn
like in figure 12

◮ Cells that occupy the same relative position in the V = 0 and
V = 1 submaps are considered to be adjacent

◮ A Karnaugh map for a 6-variable logic function can be drawn
like in figure 13

◮ Cells that occupy the same relative positions in adjacent
submaps are considered to be adjacent

◮ There are also other graphical representations of 5- and
6-variable Karnaugh maps

◮ For more than 6 variable functions (and even for 5- and
6-variable functions) it is difficult to visualize the prime
implicants.

16

17

19

18

20

21

23

22

28

29

31

30

24

25

27

26

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

V=0 V=1
Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 12 : Karnaugh map for 5-variable logic functions

16

17

19

18

20

21

23

22

28

29

31

30

24

25

27

26

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

U,V = 0,0 U,V = 0,1

U,V = 1,0 U,V = 1,1

48

49

51

50

52

53

55

54

60

61

63

62

56

57

59

58

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

32

33

35

34

36

37

39

38

44

45

47

46

40

41

43

42

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 13 : Karnaugh map for 6-variable logic functions

Outline

Combinational-Circuit Synthesis
Karnaugh Maps
Minimizing Sums of Products
Karnaugh Maps for Five and Six Variables Logic Functions
“Don’t Care” Input Combinations
Simplifying Product of Sums

Timing Hazards
Static Hazards
Finding Static Hazards Using Maps
Dynamic Hazards

“Don’t Care” Input Combinations

◮ Sometimes in the specifications of a circuit the output doesn’t
matter for certain input combinations, called don’t cares

◮ This is because these input combinations never occur or
because the output really does’n matter for certain input
combinations

◮ In the function that describes the circuit there is a d-list, or
d-set, the list of don’t care input combinations

◮ In the Karnaugh map we put a d value on these positions.

◮ In the minimization procedure it is not necessary to include
the d ’s in the product terms, but we can include them if it
helps reducing the cost.

◮ An example is given in figure 14: the prime-number detector
for BCD (binary codded decimally) numbers.

“Don’t Care” Input Combinations
◮ BCD means that the combinations corresponding to decimal

numbers between 10 and 15 (or hexadecimal numbers
between A and F) never occur.

◮ For example, if we count in base 16, we have the sequence
0, 1, 2, . . . , 8, 9,A,B, . . . ,E ,F , which corresponds to the binary
numbers
0000, 0001, 0010, . . . , 1000, 1001, 1010, 1011, . . . , 1110, 1111

◮ If we count in BCD, we have the sequence
0, 1, 2, . . . , 8, 9, 10, 11, . . . , 14, 15, which corresponds to the
binary numbers 0000, 0001, 0010, . . .1000, 1001,
0001 0000, 0001 0001, . . . , 0001 0100, 0001 0101

◮ In the Karnaugh map we put d ’s on the cells 10-15.
◮ The procedure for circling prime implicants changes as

follows:
1. Allow d ’s to be included when we circle 1’s, in order to

increase the size of the product term (and hence to reduce the
number of variables in the corresponding prime implicants)

2. Do not circle sets that contain only d ’s, this would only
increase the cost by adding product terms

3. Do not circle any 0 !

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

N3 N2

N1 N0

00

1 1 d

d

d

d

d

d

11

1

01

11

10

N3

N2

N1

N0

N3 N2

N1 N0

N3

N2

N1

N0

(a)
00 01 11 10

00

1 1 d

d

d

d

d

d

11

1

01

(b)

F = N3′ • N0 + N2′ • N1

11

10

N3′ • N0

N2′ • N1

N2 • N0

F = ΣN3,N2,N1,N0(1,2,3,5,7) + d(10,11,12,13,14,15)

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 14 : Prime BCD detector (a) initial Karnaugh map; (b)
Karnaugh map with prime implicants and distinguished 1-cells

Outline

Combinational-Circuit Synthesis
Karnaugh Maps
Minimizing Sums of Products
Karnaugh Maps for Five and Six Variables Logic Functions
“Don’t Care” Input Combinations
Simplifying Product of Sums

Timing Hazards
Static Hazards
Finding Static Hazards Using Maps
Dynamic Hazards

Simplifying Product of Sums

We use principle of duality. There are two methods

1. First method:

1.1 We look at 0s in Karnaugh map, since each 0 corresponds to a
maxterm in the canonical product of the function

1.2 Follow the procedure learned for minimizing sum of products in
a dual way !

2. The second method is easier:

2.1 First complement the logic function F and obtain F ′.
2.2 Find a minimal sum for F ′ using the known method
2.3 Complement the minimal sum of F ′ and we will obtain the

minimal product of F , using DeMorgan’s theorems

Other Topics Concerning Combinational Circuits

Minimization

◮ The Karnaugh maps are good for minimizing “by hand”

◮ There are programmed minimization methods, that are more
suitable for programming on computers

◮ One such programmed method is the Quine-McCluskey
method, guaranteed to find “minimal” solution

◮ Works well for up to 8-12 variables, but for more variables its
complexity blows up

◮ In real-world problems are used heuristics, that find a “good
enough” (“almost minimal”) solution in a reasonable time
using well-educated guesses

◮ Another issue is the minimization of the multiple-output
functions: there are formal methods to perform
multiple-output minimization using Karnaugh maps, but of
high complexity (some methods use multivalued logic)

Outline

Combinational-Circuit Synthesis
Karnaugh Maps
Minimizing Sums of Products
Karnaugh Maps for Five and Six Variables Logic Functions
“Don’t Care” Input Combinations
Simplifying Product of Sums

Timing Hazards
Static Hazards
Finding Static Hazards Using Maps
Dynamic Hazards

Introduction

◮ The circuit analysis that we performed earlier predicts only
steady-state behaviour of combinational circuits.

◮ It means that it predicts the output of the circuit as a
function of its inputs under the assumption that the inputs
have been stable for a long period.

◮ Also, we ignored circuits’ delay.

◮ Transient behaviour : we consider the changes (transitions)
that take place in the circuit

◮ The predictions of the transient behaviour can differ from
these of the steady state analysis

◮ The output of a circuit can produce a short impulse, called
glitch, when steady-state analysis predicts that the output of
the circuit should not change.

◮ A hazard is said to exist when the circuit has the possibility of
producing a glitch.

Introduction

◮ It does not mean that the glitch will appear for sure, it
depends on the circuit’s delays and on other electrical
characteristics of the circuit.

◮ Those factors are difficult, if not impossible to control

◮ Maybe a glitch will occur in the worst case combination of
logical and electrical conditions

◮ We want to eliminate the hazards, i.e. the possibility of
apparition of glitches

◮ Depending on how the output of the circuit is used, the
glitches can negatively impact the functioning of the system
that contains the circuit.

◮ Hazards are not harmful if we use properly designed
synchronous circuits, i.e., if we store the outputs of a
combinational circuit only after is become stable.

Outline

Combinational-Circuit Synthesis
Karnaugh Maps
Minimizing Sums of Products
Karnaugh Maps for Five and Six Variables Logic Functions
“Don’t Care” Input Combinations
Simplifying Product of Sums

Timing Hazards
Static Hazards
Finding Static Hazards Using Maps
Dynamic Hazards

Static Hazards. Static-1 Hazard

Definition
A static-1 hazard is a pair of input combination that:

1. differ in only one input variable and

2. both give a 1 output

such that it is possible for a momentary 0 output to occur during a
transition in the differing input variable.

Example: circuit from figure 15 (a)

◮ Suppose that X = Y = 1 and that Z changes from 1 to 0

◮ We assume that the propagation delay on each gate (or
inverter) is one time unit

◮ Figure 15 (b) shows the timing diagram

◮ Static analysis predicts that circuit’s output F is 1 for both
input combinations: XYZ = 111 and XYZ = 110

◮ However, F = 0 for one time unit during the 1 → 0 transition
on Z , because of the delay on the inverter gate (with input Z
and output ZP)

Static Hazards. Static-1 Hazard

ZP

(a) (b)

X

Z

Y

F

1

0

1

0

1

0

1

0

1

0

Z

YZ

XZP

XZP

YZ

ZP

F
Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 15 : Circuit with a static-1 hazard (a) logic diagram; (b) timing
diagram

Static Hazards. Static-0 Hazard

Definition
A static-0 hazard is a pair of input combination that:

1. differ in only one input variable and

2. both give a 0 output

such that it is possible for a momentary 1 output to occur during a
transition in the differing input variable.

Static-0 hazard is the dual of static-1 hazard, hence the dual of the
circuit from figure 15 would have a static-0 hazard.
Figure 16 (a) presents a circuit with static-0 hazards. One of the
hazards is shown in figure 16 (b), which gives the timing diagram
for the case when WXY = 000 and Z changes from 0 to 1.

Static Hazards. Static-0 Hazard

ZP

(a) (b)
W

X

Z

Y

F

1

0

1

0

1

0

1

0

1

0

Z

YZ

WXZP

XPYP

WXZP

YZ

F

ZP

YP

XP

0

0

0→1

0→1

1→0

0→1

1→0

0 0

0
0

1

1

1

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 16 : Circuit with static-0 hazards (a) logic diagram; (b) timing
diagram

Outline

Combinational-Circuit Synthesis
Karnaugh Maps
Minimizing Sums of Products
Karnaugh Maps for Five and Six Variables Logic Functions
“Don’t Care” Input Combinations
Simplifying Product of Sums

Timing Hazards
Static Hazards
Finding Static Hazards Using Maps
Dynamic Hazards

Finding Static Hazards Using Maps

◮ Karnaugh maps can be used to detect and remove hazards

◮ Static-0 hazard can appear in a circuit that implements a sum
of products only if an AND gate contains a variable and its
complement, but this would be nonsense

◮ Hence, a properly designed two-level AND-OR circuit cannot
have static-0 hazards, but it can have static-1 hazards

◮ If we look at the Karnaugh map that from figure 17 (a), that
corresponds to the circuit from figure 15, we can observe that:

◮ There is no product term that covers both input combinations
XYZ = 111 and XYZ = 110

◮ Then, intuitively it is possible for the output to “glitch” to 0
momentarily if the AND gate that covers one of the two input
combination goes to 0 before the output gate that covers the
other combination goes to 1

◮ Also intuitively, the solution would be to add the extra product
term (an AND gate) that covers the combination XY = 11

◮ Figure 17 (b) gives the solution, and the resulted circuit is in
figure 18

Finding Static Hazards Using Maps

1

1

00 01 11 10
X Y

Z

X

Y

Z1

10

1 1

1

00 01 11 10
X Y

Z

X

Y

Z1

10

1

(a) (b)

X • Z′
 X • Z′

Y • Z Y • Z X • Y

F = X • Z′ + Y • Z F = X • Z′ + Y • Z + X • Y

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 17 : Karnaugh map for the circuit of figure 15: (a) as originally
designed; (b) with static-1 hazard eliminated

X

Z

Y

F

XZP

YZ

XY

ZP

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 18 : Circuit with static-1 hazard eliminated

Finding Static Hazards Using Maps

◮ The extra product term is the consensus of the two original
terms

◮ In general, we must add consensus terms to eliminate hazards

◮ Figure 19 shows an example where three product terms must
be added to eliminate hazard

◮ A properly designed two-level OR-AND circuit (product of
sums) has no static-1 hazards, but it can have static-0 hazards

◮ These static-0 hazards can be detected and eliminated if we
study the adjacent 0s in Karnaugh maps, in a dual way to
what was presented for static 1 hazards.

00 01 11 10

W X

Y Z

00 1

1

1 1

1 1 1

1

1 1

01

11

10

W

X

Y

Z

X • Y′ • Z′

W′ • Z

W • Y

(a)

00 01 10

W X

Y Z

00 1

1

1 1

1 1 1

1

1 1

01

11

10

W

X

Y

Z

(b)

11

W′ • X • Y′

W • X • Z′

Y • Z

F = X • Y′ • Z′ + W′ • Z + W • Y
+ W′ • X • Y′ + Y • Z + W • X • Z′

F = X • Y′ • Z′ + W′ • Z + W • Y

Figure 19 : Karnaugh map for another sum-of-products circuit: (a) as
originally designed; (b) with extra product terms to cover static-1 hazards

Outline

Combinational-Circuit Synthesis
Karnaugh Maps
Minimizing Sums of Products
Karnaugh Maps for Five and Six Variables Logic Functions
“Don’t Care” Input Combinations
Simplifying Product of Sums

Timing Hazards
Static Hazards
Finding Static Hazards Using Maps
Dynamic Hazards

Dynamic Hazards

Definition
A dynamic hazard is the possibility of an output to change more
than once as the result of a single input transition.

Multiple output transitions occur if there are multiple paths with
different delays from the changing input to the changing output.

Example: circuit from figure 20, where there are three different
paths from input X to the output F :

1. the first path goes through a slow OR gate,

2. the second path goes through an even slower OR gate

3. the third path goes through very fast gates.

Except the two OR gate (slow and slower), we consider that all
other gates are very fast.

Dynamic Hazards

1. We consider that the input WXYZ = 0001, which means that
the output F will be 1.

2. We change the input X to 1.

3. The transitions through the very fast gates (shown in black)
take place next and the output goes to 0

4. Then the output of the slow gate changes from 0 to 1,
followed by the output of the next AND gate and then by the
output F (all transitions in non-italic blue)

5. After that the slower gate changes from 1 to 0, followed by the
output of the next AND gate and then by the output F , that
reaches the final 0 value (all these transitions in italic blue)

Dynamic hazards do not occur in properly designed two-level
AND-OR or OR-AND circuits, they can appear only in multilevel
circuits.
A properly designed circuit is a circuit where no variable and its
complement are connected to the same first-level gate.

Dynamic Hazards

1

1

W

X

Y

Z

0 → 1

1 → 0

1 → 0

1 → 0
1 → 0 → 1 → 0

0 → 1

0 → 1 → 0
1 → 0

0

0

1

slow

slower F

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 20 : Circuit with a dynamic hazard

	Combinational-Circuit Synthesis
	Karnaugh Maps
	Minimizing Sums of Products
	Karnaugh Maps for Five and Six Variables Logic Functions
	``Don't Care'' Input Combinations
	Simplifying Product of Sums

	Timing Hazards
	Static Hazards
	Finding Static Hazards Using Maps
	Dynamic Hazards

