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First Example. The Problem

Design a clocked synchronous state machine with two
inputs, A and B, and a single Z output that is 1 if:

◮ A had the same value at each of the two previous
clock ticks, or

◮ B has been 1 since the last time that the first
condition was true.

Otherwise, the output should be 0.

◮ The description does not look very clear at a first reading.

◮ At this point it can be useful to imagine a scenario and to
draw a timing diagram for one or more sequences of inputs.

◮ Figure 1 contains such an example.



Timing Diagram for Example State Machine
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A
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Z
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Figure 1 : Timing diagram for example state machine



The Timing Diagram and the State Table

◮ It’s unlikely that the timing diagram will specify
unambiguously the machine’s behavior for all possible
sequences of inputs, but it is a good starting point for
discussion

◮ Also, the timing diagram helps us to imagine various scenarios,
that we can verify again at the end of the design process

◮ The first step in a timing diagram is to construct a template

◮ In this example, we know from the word description that the
machine is of Moore type

◮ Now, we can try to obtain a state table of the machine

◮ This process of building a state table will possibly take several
iterations

◮ The evolution of the process is shown in figure 2



The Evolution of the State Table

◮ We provide two columns for the current state: one with the
state’s meaning, and the second one with the state label

◮ We provide one next-state column for each possible input
combination

◮ Here we provide one single column for output values

◮ For a Mealy machine, the output values are written along with
the next state values, for each input combination

◮ The order in which the input combinations are written is not
important here, but we will simplify the derivation of
excitation equation later if we write them in Karnaugh
map-order



The Evolution of the State Table (Cont’d)
◮ The word description is not specific about what happens at

the initialization (when the machine is first started), so we can
assume that the machine enters an initial state, called INIT
here (see fig 2 (a) )

◮ The value of Z in the INIT state is 0, since there were no two
inputs beforehand

◮ Next, we must fill the next-state entries for the INIT row
◮ The output Z cannot be 1 until we have seen at least two

inputs on A, so we will provide two next states, A0 and A1,
that “remember” the value of A on the previous clock ticks,
as shown in fig 2 (b)

◮ In both A0 and A1 the output Z is 0, since the condition for a
1 hasn’t been satisfied yet

◮ The meaning of A0 is “got A = 0 on the previous tick, A 6= 0
on the tick before that, and B 6= 1 at some time since the
previous pair of equal A inputs”

◮ The meaning for A1 is similar



The Evolution of the State Table (Cont’d)

◮ In state A0, we know that A was 0 in the previous clock tick
◮ If A is 0 again, we go to a new state OK with Z=1 (fig 2 (c))
◮ If A is 1, then we don’t have two equal inputs in a row, so we

go to state A1 (to remember that we just got a 1)

◮ Similar, in state A1 we go to OK if we get a second 1 input in
a row, or to A0 if we get a 0 (fig 2 (d))

◮ Once we are into the OK state, we can stay there as long as
B=1, irrespective of the A input (see fig 3 (a))

◮ But if B=0 we have to look for two 1s or two 0s in a row on
A again

◮ The problem is that the OK state itself doesn’t tell us if the
previous value of A was a 0 or a 1



The Evolution of the State Table (Cont’d)

◮ The solution is to split the OK state into two OK states: OK0
and OK1, that “remember” the previous A input (fig 3 (b))

◮ Hence, OK0 means that the previous value of A has been 0,
and OK1, that the previous value of A has been 1

◮ All of the next states of OK0 and OK1 can be selected from
the existing states, as shown in (c) and (d)

◮ Now we have achieved “closure” of the state table, meaning
that the state table describes a finite-state machine

◮ As a final check, in figure 4 we repeat the timing diagram of
figure 1, listing the states that should be visited according to
the state table



Evolution of the State Table

A1 A1 A0 A0 OK OK 0

0

 00 S  01  11  10 Z

A B

S∗

INIT

 00 S  01  11  10 Z

A B

S∗

INIT A0 A0 A1 A1 0
A0

A1

 00 S  01  11  10 Z

A B

S∗

INIT A0 A0 A1 A1 0

0

A0 OK OK A1 A1 0

 00 S  01  11  10 Z

A B

S∗

INIT A0 A0 A1 A1 0
A0 OK OK A1 A1 0

0. . .

. . .

. . .

(a)

(c)

(b)

(d)
 Meaning

Initial state

Got a 0 on A

Got a 1 on A

Got two equal A inputs

 Meaning
Initial state

Got a 0 on A

Got a 1 on A

Got two equal A inputs

 Meaning
Initial state

Got a 0 on A

Got a 1 on A

 Meaning
Initial state

OK OK
0
1 1

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 2 : Evolution of a state table



Continued Evolution of the State Table
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Figure 3 : Continued evolution of a state table



Timing Diagram and State Sequence for Example State

Machine

CLOCK

A

B

Z

STATE A1 OK1 A0OK0 OK1 OK0A0INIT OK0 A1 OK1 A0
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Figure 4 : Timing diagram and state sequence for example state machine



Realizing a Reliable Reset

◮ The hardware design of a state machine should ensure that it
enters a known initial state on power-up

◮ Most systems have a RESET signal that is asserted during
power-up

◮ The RESET signal is typically generated by an analog circuit

◮ During power-up, the circuit detects a voltage (e.g. 4.5 V)
close to the power supply full voltage (5 V) with a certain
delay (e.g. 100 ms) to ensure that all components have time
to stabilize before the circuit “unresets” the system

◮ Such a circuit is TL7705 from Texas Instruments: it has an
internal 4.5 V reference and uses an external resistor and
capacitor to determine the “unreset” constant (e.g. 100 ms)



Realizing a Reliable Reset

◮ If we use discrete flip-flops with asynchronous preset and clear
inputs, the RESET can be applied to these inputs to force the
machine to the desired state

◮ If the asynchronous preset and clear are not available, or if we
need a synchronous reset, then the RESET signal may be used
as another input to the state machine and all the next state
entries going to the desired state (e.g. 00 . . . 00) when RESET
is asserted
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State Minimization
◮ If the number of states of a finite state machine is not

minimal, we can use formal procedure for state minimization
◮ These procedures aim to identify equivalent states
◮ Two states are equivalent if it is impossible to distinguish

them by observing only the current and future outputs of the
machine (and not the internal variables)

◮ A pair of equivalent states can be replaced by a single state
◮ Two states S1 and S2 are equivalent if they produce the same

value at the machine outputs AND if, for each input
combination, S1 and S2 must have either the same next state
or equivalent next states

◮ An experienced designer can produce a machine with a
minimal or near minimal number of states without using
formal state minimization procedures

◮ Sometimes we can obtain a better or cheaper design if we
increase the number of states

◮ A designer can do more to simplify a state machine during the
state-assignment phase of the design
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State Assignment

◮ Next step in the design process is to determine how many
binary variables are required to represent the states in the
state table and how to assign a binary combination to each
named state

◮ A binary combination assigned to a particular state is called a
coded state

◮ The total number of states in a machine with n state variables
is 2n

◮ Hence, the total number of flip-flops needed to code s states
is ⌈log2 s⌉ (the smallest integer greater than or equal to log2 s)



State Assignment

◮ The state/output table of our example is repeated in Table
7-6 (fig 5)

◮ There are 5 states, so it requires 3 flip-flops

◮ Three flip-flops provide 23 = 8 states, so there will be
8− 5 = 3 unused states

◮ For the unused states, we can take either the minimal risk
approach, or the minimal cost approach

◮ Now we will discuss the choices for coding the 5 states



State and Output Table for Example Problem

Table 7 -6
State and output table 
for example problem.

A B

S 00 01 11 10 Z

INIT A0 A0 A1 A1 0

A0 OK0 OK0 A1 A1 0

A1 A0 A0 OK1 OK1 0

OK0 OK0 OK0 OK1 A1 1

OK1 A0 OK0 OK1 OK1 1

S∗

Figure 5 : State and output table for example problem



Possible State Assignments for Example Problem

◮ The simplest assignment of s coded states is to use the first s
binary integers in binary counting order (first assignment
column in Table 7-7, fig 6

◮ However, the simplest state assignment does not always lead
to the simplest excitation equations, output equations, and
resulting logic circuit

◮ The state assignment has a major effect on circuit cost, and it
may interact with other factors, such as the choice of storage
elements (D versus J-K flip-flops), and the realization for
excitation and output logic (sum of products, product of
sums, ad hoc design)

◮ If we want to choose the best assignment we have to try all
assignments, but this is obviously not feasible !

◮ Most digital designers rely on experience and several practical
guidelines for making reasonable state assignments



Guidelines for State Assignments

◮ Choose an initial coded state into which the machine can
easily be forced at reset: 00 . . . 00 or 11 . . . 11

◮ Minimize the number of state variables that change at each
transaction

◮ Maximize the number of state variables that don’t change in a
group of related states (a group of states in which most
transactions stay in the group)

◮ Exploit symmetries in the problem specification and the
corresponding symmetries in the state table:

◮ If one group of states means almost the same thing as another,
then, once we established an assignment for the first group,
use a similar assignment, differing in only one bit, for the
second group



Guidelines for State Assignments (Cont’d)

◮ If there are unused states, then choose the “best” of the
available state-variable combinations to achieve the foregoing
goals (don’t limit the choice of coded states to the first s n
bit integers)

◮ Decompose the set of variables into individual bits or fields,
where each bit or field has a well-defined meaning with
respect to the input effects or output behavior of the machine

◮ Consider using more than the minimum number of state
variables to make a decomposed assignment possible



The Decomposed State Assignment

◮ Some of these guidelines are applied to the “decomposed”
state assignment (in Table 7-7)

◮ The initial state is 000, which is easy to force by RESET
(either synchronously or asynchronously)

◮ In this example, the INIT state is never reentered again (some
other machines can have an “idle” state, that the machine
enters at reset or when it has nothing in particular to do)

◮ After coding the INIT state, we take advantage of the fact
that there are unused states

◮ Q1 is used to indicate if the machine is in the INIT state or
not

◮ State bits Q2 and Q3 have individual meanings: Q3 gives the
previous value of A and Q2 indicates that the conditions for a
1 output are satisfied in the current state

◮ We will continue the state machine design based on this
assignment in later subsections



Other Possible State Assignments

◮ Another state machine assignment, that can be adapted to
any state machine is one-hot assignment, shown in Table 7-7

◮ This assignment uses more than the minimum number of
state variables: it uses one bit per state

◮ It is simple and usually leads to small excitation equations,
since each flip-flop must be set to 1 for transitions into only
one state

◮ If the machine has many states, then this assignment requires
many more than the minimum number of flip-flops

◮ The last column in Table 7-7 is an “almost one-hot
assignment”, that uses the “no-hot” combination for the
initial state

◮ This assignment makes sense, since the initial state is never
revisited in this machine

◮ Also, it is easy to initialize all flip-flops to zero at power-up or
reset



Possible State Assignments for Example Problem

Assignment Tab le 7-7
Possible state 
assignments for the 

state machine in 

Table 7-6. 

State 
Name

Simplest 
Q1–Q3

Decomposed 
Q1–Q3

One-hot 
Q1–Q5

Almost One-hot 
Q1–Q4

INIT 000 000 00001 0000

A0 001 100 00010 0001

A1 010 101 00100 0010

OK0 011 110 01000 0100

OK1 100 111 10000 1000

Figure 6 : Possible state assignments for the state machine in Table 7.6
(in figure 5)
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Synthesis Using D Flip-Flops

◮ Figure 7 shows the transition and output table for this problem

◮ Here, coded states are substituted for named states in the
state table

◮ For D flip-flops we can directly obtain the excitation table (in
figure 8) from the transition and output table

◮ Actually, with D flip-flops, we can call the transition table
transition/excitation table

◮ Then we transfer the information from the
transition/excitation table to the excitation maps (figure 9 for
minimal risk approach and figure 10 minimal cost approach)

◮ In this case we have to minimize five-variables Karnaugh-maps

◮ A 5-variable Karnaugh map is drawn as a pair of 4-variable
Karnaugh maps where the cells in the same positions in the
two maps are considered to be adjacent



Excitation equations for the Minimal Risk Approach

From the Karnaugh maps of figure 9, we find the excitation
equations for minimal risk approach:

D1 = Q1 + Q2′ · Q3′

D2 = Q1 ·Q3′ · A′ + Q1 ·Q3 · A+ Q1 · Q2 · B
D3 = Q1 · A+ Q2′ ·Q3′ · A

The output Z is the sum of the minterms for the two coded states
(111 and 110) in which Z is 1:

Z = Q1 · Q2 · Q3 + Q1 · Q2 · Q3′ = Q1 ·Q2



Excitation equations for the Minimal Cost Approach

From the Karnaugh maps of figure 10, we find the excitation
equations for minimal cost approach, that are simpler than in the
minimal risk case:

D1 = 1
D2 = Q1 ·Q3′ · A′ + Q3 · A+ Q2 · B
D3 = A

The value of Z is “don’t care” for the unused states, which lead to:

Z = Q2

Figure 11 shows the resulting logic diagram for the minimum cost
approach



Transition and Output Table for Example Problem

A B Table 7-8
Transition and output 
table for example 

problem.

Q1 Q2 Q3 00 01 11 10 Z

000 100 100 101 101 0

100 110 110 101 101 0

101 100 100 111 111 0

110 110 110 111 101 1

111 100 110 111 111 1

Q1∗ Q2∗ Q3∗

Figure 7 : Transition and output table for example problem



Excitation and Output Table for Example Problem

Table 7-9
Excitation and output 
table for Table 7-8 

using D flip-flops.

A B

Q1 Q2 Q3 00 01 11 10 Z

000 100 100 101 101 0

100 110 110 101 101 0

101 100 100 111 111 0

110 110 110 111 101 1

111 100 110 111 111 1

D1 D2 D3

Figure 8 : Excitation and output table for Table 7-8 (fig 7) using D
flip-flops



Excitation Maps for Example State Machine, Minimum

Risk Approach
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Figure 9 : Excitation maps for D1, D2, and D3 assuming that unused
states go to state 000



Excitation Maps for Example State Machine, Minimum

Cost Approach
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Figure 10 : Excitation maps for D1, D2, and D3 assuming that next
states of unused statesare “don’t-cares”



Logic Diagram for Example State Machine, Minimum Cost

Approach
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Figure 11 : Logic diagram resulting from figure 10
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Synthesis Using J-K Flip-Flops

◮ Compared to D flip-flops, the big difference occurs in the
derivation of an excitation table from the transition table

◮ We need an application table, which expresses the required
values of J and K (as functions of Q and Q*) in order to
change the flip-flop’s state from Q to Q*

◮ To obtain a J-K excitation table, the designer must look at
both the current and desired next value of each state bit in
the transition table and substitute the corresponding pair of J
and K values from the application table

◮ For our problem, the excitation table obtained in this way is
shown in Table 7-11, fig 13

◮ This information is transferred to Karnaugh maps in figure 14
for the minimum risk approach.



Excitation Equations for J-K Flip-Flops
From the Karnaugh maps we obtain the following excitation
equations for the minimal risk approach:

J1 = Q2′ ·Q3′

K1 = 0
J2 = Q1 ·Q3′ · A′ + Q1 ·Q3 · A
K2 = Q1′ + Q3′ · A · B ′ + Q3 · A′ · B ′

J3 = Q2′ · A+ Q1 · A
K3 = Q1′ + A′

For the minimal cost approach, it result the following excitation
equations:

J1 = 1
K1 = 0
J2 = Q1 ·Q3′ · A′ + Q3 · A
K2 = Q3′ · A · B ′ + Q3 · A′ · B ′

J3 = A
K3 = A′



The state encoding of the J-K circuit is the same as for D circuit,
so the output equation is the same:
Z = Q1 · Q2 for the minimal risk approach and
Z = Q2 for the minimal cost approach.

A logic diagram corresponding to the minimal-cost equations is
shown in figure 15. The circuit has two more gates than the
minimal-cost D circuit !!



Application Table for J-K Flip-Flops

Q Q∗ J K Tab le  7 -10
Application table for 
J-K flip-flops.0 0 0 d

0 1 1 d

1 0 d 1 


1 1 d 0

Figure 12 : Application table for J-K flip-flops



Excitation and Output Table for the Example State

Machine

A B Tab le 7-11
Excitation and output 
table for the state 

machine of Table 7-8, 

using J-K flip-flops.

Q1 Q2 Q3 00 01 11 10 Z

000 1d, 0d, 0d 1d, 0d, 0d 1d, 0d, 1d 1d, 0d, 1d 0

100 d0, 1d, 0d d0, 1d, 0d d0, 0d, 1d d0, 0d, 1d 0

101 d0, 0d, d1 d0, 0d, d1 d0, 1d, d0 d0, 1d, d0 0

110 d0, d0, 0d d0, d0, 0d d0, d0, 1d d0, d1, 1d 1

111 d0, d1, d1 d0, d0, d1 d0, d0, d0 d0, d0, d0 1

J1 K1, J2 K2, J3 K3

Figure 13 : Excitation and output table for the state machine of table
7-8 (fig 7)



Excitation Maps for Example State Machine, Minimum

Risk Approach
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Figure 14 : Excitation maps for J1, K1, J2, K2, J3, and K3 assuming
that unused states go to state 000



Logic Diagram for Example State Machine, Minimum Cost

Approach
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Figure 15 : Logic diagram for example state machine, using J-K
flip-flops and minimal-cost excitation logic
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“Combination Lock” State Machine Example

Design a clocked synchronous state machine with one
input, X, and two outputs, UNLK and HINT. The UNLK
output should be 1 if and only if X is 0 and the sequence
of inputs received on X at the preceding clock ticks was
0110111. The HINT output should be 1 if and only if the
current value of X is the correct one to move the machine
closer to being in the “unlocked” state (with UNLK=1).

It is apparent from the word description that it is a Mealy machine:

◮ The UNLK depends on both the past history of inputs and on
X’s current value

◮ HINT depends on the state and on the current X



State and Output Table for the Combination Lock Machine

◮ A state and output table for the combination lock machine is
presented in Table 7-14, fig 16

◮ In initial state A we assume that we have received no inputs in
the required sequence and we are looking for the first 0 in the
sequence

◮ If we get an 1, we stay into state A
◮ If we get a 0, we move into state B
◮ In state B we are looking for a 1, and move to state C if we

get it, or stay into state B if we don’t get it (since the 0 we
just received might be the first 0 in the required sequence

◮ In each successive state, we move on to the next state if we
get the correct input, and we go back to A or B if we get the
wrong input

◮ An exception occurs in state G: if we get the wrong input (a
0), the previous three inputs might still turn out to be the first
three inputs of the required sequence, so we go back to E
instead of B



Combination Lock Machine

◮ In state H, we have received the required sequence, so we set
UNLK to 1 if X is 0

◮ In each state, we set HINT to 1 for the value of X that moves
us closer to state H

◮ There are 8 states, so we can code them with 3 variables

◮ We assign the states in binary counting order, to obtain the
transition/excitation table in Table 7-15, figure 17

◮ The corresponding Karnaugh maps for D1, D2 and D3 are
shown in figure 18

◮ The output values are transfered from the
transition/excitation and output table to the set of Karnaugh
maps from figure 19



Excitations and Output Equations

From figure 18 we read the following excitation equations:

D1 = Q1 ·Q2′ · X + Q1′ · Q2 ·Q3 · X ′ + Q1 ·Q2 ·Q3′

D2 = Q2′ · Q3 · X + Q2 ·Q3′ · X
D3 = Q1·Q2′ ·Q3′+Q1·Q3·X ′+Q2′ ·X ′+Q3′ ·Q1′ ·X ′+Q2·Q3′ ·X

From figure 19 we can read the output equations:

UNLK = Q1 ·Q2 ·Q3 · X ′

HINT =
Q1′ ·Q2′ ·Q3′ ·X ′+Q1·Q2′ ·X+Q2′ ·Q3·X+Q2·Q3·X ′+Q2·Q3′ ·X



State and Output Table for the Combination Lock Machine

Tab le 7-14
State and output table 
for combination-lock 

machine.

X

Meaning S 0 1

Got zip A B, 01 A, 00

Got 0 B B, 00 C, 01

Got 01 C B, 00 D, 01

Got 011 D E, 01 A, 00

Got 0110 E B, 00 F, 01

Got 01101 F B, 00 G, 01

Got 011011 G E, 00 H, 01

Got 0110111 H B, 11 A, 00

S∗, UNLK HINT

Figure 16 : State and output table for combination lock machine



Transition/Excitation Table for the Combination Lock

Machine

X Tab le  7 -15
Transition/excitation 
table for combination-

lock machine.

Q1 Q2 Q3 0 1

000 001, 01 000, 00

001 001, 00 010, 01

010 001, 00 011, 01

011 100, 01 000, 00

100 001, 00 101, 01

101 001, 00 110, 01

110 100, 00 111, 01

111 001, 11 000, 00

Q1∗ Q2∗ Q3∗, UNLK HINT

Figure 17 : transition and excitation table for combination lock machine



Excitation Maps for Combination-Lock Machine
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Figure 18 : Excitation maps for D1, D2, and D3 in combination-lock
machine



Karnaugh Maps for Output Functions in Combination-Lock

Machine
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Figure 19 : Karnaugh maps for output functions UNLK and HINT in
combination-lock machine
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Designing State Machines Using State Diagrams

◮ State diagrams offer a graphical approach to state machines
design which is suited for small to medium sized state
machines

◮ Designing a state diagram is much like designing a state table

◮ However, there is one fundamental difference between a state
diagram and a state table:

◮ This difference makes state diagram design simpler, but more
error-prone than the state-table design

◮ A state table is an exhaustive listing of the next states for each
state/input combination. No ambiguity is possible

◮ A state diagram contains a set of arcs labeled with transition
expressions. Only one transition expression is required per arc,
even if there are many inputs. When a state diagram is
constructed there is no guarantee that the transition
expressions written on the arcs leaving a particular state cover
all input combinations exactly once



Designing State Machines Using State Diagrams

◮ In an improperly constructed (i.e. ambiguous) state diagram,
some state/input combinations way have no next state
specified, which is generally undesirable

◮ Other states may have multiple next states for the same
state/input combination, which is wrong !

◮ Thus, considerable care must be taken in the design of state
diagrams

◮ We will show an example



Example of State Machine Design Using State Diagrams

◮ We want to design a state machine that controls the tail
lights of a car Ford Thunderbird from 1965, shown in fig 20

◮ There are three lights on each side, and for turns they operate
in sequence to show the turning direction, as illustrated in fig
21

◮ The state machine has two input signals, LEFT and RIGHT,
that carry the driver’s request for a left or a right turn

◮ It also has an emergency-flasher input, HAZ, that request the
tail lights to be operated in hazard mode (all six lights
flashing on and off in unison)

◮ We also assume the existence of a free running clock whose
frequency equals the desired flashing rate for the lights



T-Bird Tail Lights

ZOTTFFS
CALIFORNIA

RA RB RCLC LB LA

Copyright © 2000 by Prentice Hall, Inc.
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Figure 20 : T-bird tail lights



Flashing Sequence for T-Bird Tail Lights

LC(a) LB LA RA(b) RB RC

Copyright © 2000 by Prentice Hall, Inc.
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Figure 21 : Flashing sequence for T-bird tail lights: (a) left turn; (b)
right turn



Initial State Diagram and Output Table for T-Bird Tail

Lights

◮ We will design a Moore machine: the state alone determines
which lights are on and which are off

◮ For a left turn, the state machine should cycle through four
states in which the righthand lights are off and 0, 1, 2, or 3 of
the lefthand lights are on

◮ A similar situation takes place for a right turn

◮ In hazard mode, only two states are required: all lights on and
all lights off

◮ Figure 22 shows our first attempt of state diagram

◮ A common IDLE state is defined where all lights are off

◮ When a left turn is requested, the machine goes through three
states in which 1, 2, and 3 of the lefthand lights are on, and
then back to IDLE

◮ Right turn works similarly



Initial State Diagram and Output Table for T-Bird Tail

Lights

◮ In the hazard mode, the machine cycles back and forth
between IDLE state and a state in which all six lights are on
(labeled LR3)

◮ The figure 22 contains an output table instead of writing
output values on the diagram

◮ We can write output equations from the output table, if we
let each state name represent a logic expression that is 1 only
in that state:

LA = L1 + L2 + L3 + LR3
RA = R1 + R2 + R3 + LR3
LB = L2 + L3 + LR3
RB = R2 + R3 + LR3
LC = L3 + LR3
RC = R3 + LR3



Initial State Diagram and Output Table for T-Bird Tail

Lights

LR3

R1R3

R2

IDLE

L1

L2

LEFT1

1

RIGHT1

1 1

HAZ

L3

(LEFT + RIGHT + HAZ)′


1 1

State

IDLE

L1

L2

L3

R1

R2

R3

LR3

LC

0

0

0

1

0

0

0

1

LB

0

0

1

1

0

0

0

1

LA

0

1

1

1

0

0

0

1

RA

0

0

0

0

1

1

1

1

RB

0

0

0

0

0

1

1

1

RC

0

0

0

0

0

0

1

1

Output Table

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 22 : Initial state diagram and output table for T-bird tail lights



Corrected State Diagram for T-Bird Tail Lights
◮ There is a big problem with the state diagram of figure 22: it

does not properly handle multiple inputs asserted
simultaneously

◮ What happens if LEFT and HAZ (or RIGHT and HAZ) are
asserted ?

◮ According to the state diagram, the machine goes to two
states, L1 and LR3, which is impossible

◮ In reality the machine should have only one next state, which
could be L1, LR3, or a third state

◮ The problem is fixed in figure 23, where the HAZ input is
given priority

◮ Also, if LEFT and RIGHT are asserted simultaneously, the
situation is treated as a hazard request (the driver is confused
and needs help)

◮ The new state diagram is unambiguously because the
transition expressions on the arcs leaving each state are
mutually exclusive and all-inclusive



Corrected State Diagram for T-Bird Tail Lights

◮ It means that, for each state, no two expressions are 1 for the
same combination, and some expression is 1 for every input
combination

◮ These conditions can be confirmed algebraically by performing
two steps:

1. Mutual exclusion. For each state, show that the logical
product of each possible pair of transition expressions on arcs
leaving the state is 0. If there are n arcs, then there are
n(n − 1)/2 logical products to evaluate (for each state)

2. All inclusion. For each state, show that the logical sum of the
transition expression on all arcs leaving that state is 1

◮ In this example the verification for unambiguity is trivial
except for IDLE state, which has 4 transitions leaving it

◮ We can list all 8 possible combinations of the three variables
HAZ, LEFT and RIGHT and verify the conditions



Corrected State Diagram for T-Bird Tail Lights

LR3

R1R3

R2

IDLE

L1

L2

LEFT • HAZ′ • RIGHT′

1

1

RIGHT •  HAZ′ •  LEFT′

1

1 1

HAZ + LEFT •  RIGHT

L3

(LEFT + RIGHT + HAZ)′


1 1

Figure 23 : Corrected state diagram for T-bird tail lights



Enhanced State Diagram for T-Bird Tail Lights

◮ There is one more problem with the state diagram: for a left-
or right-turn, the cycle of 4 states cannot be interrupted by a
HAZ input

◮ This problem is corrected in the enhanced version of the
diagram, from fig 24

◮ For the synthesis of the state machine we have to code the 8
states, for which we need three flip-flops

◮ We use the state assignment from Table 7-16, fig 25

◮ Next step is to write a sort of transition table: we call the new
format a transition list because it has one row for each
transition or arc in the state diagram (Table 7-17, fig 26)

◮ The transition equations that define each next state variable
(i.e., Q2*, Q1*, Q0*) can be obtained from the transition list
by logical addition of all the expressions (current state and
transition expression) for the rows in which the next state
variable is 1



Transition Equations

◮ First, we have to develop a set of transition equations from
the transition list

◮ A transition equation defines each next-state variable V ∗ in
terms of the current state and input

◮ The transition list can be viewed as a sort of hybrid truth
table in which the state variable combinations from the
current state are listed explicitly and the input combinations
are listed algebraically

◮ When we read a V ∗ column (e.g. Q2∗, Q1∗, or Q0∗ in Table
7-17) we find a sequence of 0s and 1s, indicting the values of
V ∗ for various (all, if we worked correctly) state/input
combinations

◮ We define a row’s “transition p-term” for each row of the
transition list that contain a 1 in the V ∗ column

◮ The row’s “transition p-term” is the product of the current’s
state minterm and the transition expression.



Transition Equations

Thus, a transition equation for a next-state variable V ∗ can be
written using a sort of hybrid canonical sum:

V ∗ =
∑

transition-list rows where V*=1

(transition p term)

The transition equation for Q2∗ will be:
Q2∗ =
Q2′ ·Q1′ ·Q0′ · (HAZ +LEFT ·RIGHT )+Q2′ ·Q1′ ·Q0′ · (RIGHT ·
HAZ ′ ·LEFT ′)+Q2′ ·Q1′ ·Q0·HAZ+Q2′ ·Q1·Q0·HAZ+Q2·Q1′ ·
Q0·HAZ ′+Q2·Q1′ ·Q0·HAZ+Q2·Q1·Q0·HAZ ′+Q2·Q1·Q0·HAZ

Similar equations can be written for Q1∗ and Q0∗.
The equations can be simplified using algebraic methods or, better,
using CAD tools and HDLs.



Enhanced State Diagram for T-Bird Tail Lights
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Figure 24 : Enhanced state diagram for T-bird tail lights



State Assignment for T-bird Tail Lights State Machine

Tab le  7 -16
State assignment 
for T-bird tail-lights 

state machine.

State Q2 Q1 Q0

IDLE 0 0 0

L1 0 0 1

L2 0 1 1

L3 0 1 0

R1 1 0 1

R2 1 1 1

R3 1 1 0

LR3 1 0 0

Figure 25 : State assignment for T-bird tail-lights state machine



Transition List for T-bird Tail Lights State Machine

S Q2 Q1 Q0 Transition Expression S ∗ Q2∗ Q1∗ Q0∗ Tab le 7-17  
Transition list for 

T-bird tail-lights 

state machine.

IDLE 0 0 0 (LEFT + RIGHT + HAZ)′
 IDLE 0 0 0

IDLE 0 0 0 LEFT ⋅
 HAZ′
 ⋅
 RIGHT′
 L1 0 0 1

IDLE 0 0 0 HAZ + LEFT ⋅
 RIGHT LR3 1 0 0

IDLE 0 0 0 RIGHT ⋅
 HAZ′
 ⋅
 LEFT′
 R1 1 0 1

L1 0 0 1 HAZ′
 L2 0 1 1

L1 0 0 1 HAZ LR3 1 0 0

L2 0 1 1 HAZ′
 L3 0 1 0

L2 0 1 1 HAZ LR3 1 0 0

L3 0 1 0 1 IDLE 0 0 0

R1 1 0 1 HAZ′
 R2 1 1 1

R1 1 0 1 HAZ LR3 1 0 0

R2 1 1 1 HAZ′
 R3 1 1 0

R2 1 1 1 HAZ LR3 1 0 0

R3 1 1 0 1 IDLE 0 0 0

LR3 1 0 0 1 IDLE 0 0 0

Figure 26 : Transition list for T-bird tail-lights state machine
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