Fuzzy sets. Operations with fuzzy sets Chapter 2

Doru Todinca

Departament of Computers and Information Technology UPT

Fuzzy sets

Properties of fuzzy sets

Operations with fuzzy sets Properties of the operations with fuzzy sets

Outline

Fuzzy sets

Properties of fuzzy sets

Operations with fuzzy sets Properties of the operations with fuzzy sets

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Crisp (classic) sets, fuzzy sets

- Given an universe of discourse (crisp) X
- For a classic (crisp) set A ⊂ X, for each element x ∈ X, either x ∈ A or x ∉ A.
- For the set A it can be defined a characteristic function $\nu_A : X \to \{0, 1\}$, with $\nu_A(x) = 1$ iff (if and only if) $x \in A$ and $\nu_A(x) = 0$ iff $x \notin A$
- For a fuzzy set \tilde{A} , an element $x \in X$ belongs to the fuzzy set $\tilde{A} \subset X$ in a certain degree
- ▶ The characteristic function of a crisp set will be extended to the *membership function* of a fuzzy set, which can take values in the real numbers interval [0, 1]

Definitions

Definition

"If X is a collection of objects" (named the *universe of discourse*) "denoted generically by x, then a fuzzy set $\tilde{A} \subset X$ is a set of ordered pairs

$$\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) | x \in X\}$$

where $\mu_{\tilde{A}}(x) : X \to [0, 1]$ is called *membership function* or *degree* of membership (also, degree of compatibility or degree of truth). of x in A" (Zimmermann [Zim91])

If the interval of real numbers [0, 1] is replaced with the discrete set $\{0, 1\}$, then the fuzzy set \tilde{A} becomes a classic (crisp) set.

Fuzzy sets. Examples of fuzzy sets

- Fuzzy sets can be discrete or continuous
- The interval [0,1] can be extended to [0,k], where k > 0
- ► It is possible to define fuzzy sets on more complex structures than intervals or real numbers, e.g. L-fuzzy sets, where L is a partially ordered set (see chapter 3, Extensions of fuzzy sets)
- Example of discrete fuzzy set (Zimmermann [Zim91]):
 - MF: comfortable house for a 4 person family as a function of the number of bedrooms:

- The universe discourse: $X = \{1, 2, \dots, 10\}$
- $\tilde{A} \subset X$ will be $\tilde{A} = \{(1, 0.1), (2, 0.5), (3, 0.8), (4, 1.0), (5, 0.7), (6, 0.2)\}$

Examples of fuzzy sets (cnt'd)

Example of continuous fuzzy set: real numbers close to 10

- X = ℝ (the set of real numbers)
- The membership function of the fuzzy set *Ã* ⊂ ℝ:

$$\mu_{\tilde{A}}(x) = \frac{1}{1 + (x - 10)^2}$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples of fuzzy sets (cnt'd)

Example of a continuous fuzzy set: real numbers considerably larger than 11

- X = ℝ (the set of real numbers)
- The membership function of the fuzzy set: $\tilde{B} \subset \mathbb{R}$:

$$\mu_{\tilde{B}}(x) = \begin{cases} \frac{(x-11)^2}{1+(x-11)^2} & \text{if } x \ge 11\\ 0, & \text{if } x < 11\\ \end{cases}$$
(2)

イロト イポト イヨト

3

Notations for fuzzy sets

- Pairs (element, value) for discrete fuzzy sets (like in the example with the comfortable house), respectively (generic element, membership function) for continuous fuzzy sets: e.g. (x, μ_Ã(x))
- 2. Solely by stating the membership function (for continuous fuzzy sets)
- 3. As a "sum" for discrete fuzzy sets, respectively "integral" for continuous fuzzy sets (this notation may create confusions !!):

$$\tilde{A} = \sum_{i=1}^{n} \frac{\mu_{\tilde{A}}(x_i)}{x_i} = \frac{\mu_{\tilde{A}}(x_1)}{x_1} + \frac{\mu_{\tilde{A}}(x_2)}{x_2} + \dots + \frac{\mu_{\tilde{A}}(x_n)}{x_n}$$
$$\tilde{A} = \int \frac{\mu_{\tilde{A}}(x)}{x}$$

Caution, there are neither sums nor integrals here, these are only notations !!!

Outline

Fuzzy sets

Properties of fuzzy sets

Operations with fuzzy sets Properties of the operations with fuzzy sets

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Properties (characteristics) of fuzzy sets: normal fuzzy sets

- 1. Normal fuzzy sets
 - A fuzzy set is called *normal* if sup_x µ_Ã(x) = 1, where sup is the supremum of a fuzzy set
 - The difference between the maximum and the supremum of a set: the maximum belongs to the set, the supremum may belong or not to that set
 - If a fuzzy set is not normal, it can be normalized by dividing its membership function by the supremum of the set, resulting the normalized fuzzy set:

$$\mu_{ ilde{\mathcal{A}}_{norm}}(x) = rac{\mu_{ ilde{\mathcal{A}}}(x)}{\sup_{x} \mu_{ ilde{\mathcal{A}}}(x)}$$

Properties of fuzzy sets: support, core, boundary

- 2. The support of a fuzzy set
 - The support of a fuzzy set (denoted supp) is the crisp set of all x ∈ X for which µ_Ã(x) > 0
 - In the example with the comfortable house it is the set supp(Ã) = {1,2,3,4,5,6,7}
 - Usually the elements of a fuzzy set having the degree of membership equal to 0 are not listed
- 3. The (core) of a fuzzy set:
 - is the crisp set for which $\mu_{\tilde{A}}(x) = 1$
- 4. The (boundary) of a fuzzy set:
 - ▶ is the crisp set for which $0 < \mu_{\tilde{A}}(x) < 1$

Exercise: represent graphically the support, the core and the boundary for a continuous trapezoidal fuzzy set.

Properties of a fuzzy set: α -level sets

5. The α -level sets (or α -cuts):

- The α-level set (where α ∈ [0, 1]) of the fuzzy set à having the membership function μ_Ã(x) is the crisp set A_α for which μ_Ã(x) ≥ α
- We can define strong α cut as the crisp set A'_α for which μ_Ã(x) > α
- In the example with the comfortable house, WHERE $\tilde{A} = \{(1,0.1), (2,0.5), (3,0.8), (4,1.0), (5,0.7), (6,0.2)\}$, the α -cuts of the fuzzy set \tilde{A} are:

$$\begin{array}{l} \blacktriangleright \quad A_{0.1} = \{1,2,3,4,5,6\} = supp\tilde{A} \text{ (the support of } \tilde{A}) \\ \blacktriangleright \quad A_{0.2} = \{2,3,4,5,6\} \\ \vdash \quad A_{0.5} = \{2,3,4,5\} \\ \vdash \quad A_{0.7} = \{3,4,5\} \\ \vdash \quad A_{0.8} = \{3,4\} \\ \vdash \quad A_{1.0} = \{4\} = \operatorname{core} \tilde{A} \end{array}$$

Properties of a fuzzy set: α -level sets

lt can be proved that for any fuzzy set \tilde{A} , it holds:

$$ilde{A} = igcup_{lpha} lpha \cdot A_{lpha}$$

- Which means that, any fuzzy set can be written as the union for all the values of α of the product between α and the α-cuts of the fuzzy set
- This property is very important and it connects the fuzzy and the crisp sets
- It is also very useful for proving different properties of fuzzy sets (some properties are easier to be proved for crisp sets)

Properties of a fuzzy set: α -level sets

- We will illustrate this property on the example with the comfortable house:
 - α · A_α is the fuzzy set in which each element will hace the membership function equal with α.
 - $\blacktriangleright 0.1 \cdot A_{0.1} = \{(1, 0.1), (2, 0.1), (3, 0.1), (4, 0.1), (5, 0.1), (6, 0.1)\}$
 - $0.2 \cdot A_{0.2} = \{(2, 0.2), (3, 0.2), (4, 0.2), (5, 0.2), (6, 0.2)\}$
 - $0.8 \cdot A_{0.8} = \{(3, 0.8), (4, 0.8)\}$
 - $\blacktriangleright 1.0 \cdot A_{1.0} = \{(4, 1.0)\}$
 - The union of two or more fuzzy sets is defined as the maximum between their membership function, hence
 - $\begin{array}{l} \bullet \quad 0.1 \cdot A_{0.1} \cup 0.2 \cdot A_{0.2} \cup \ldots \cup 0.8 \cdot A_{0.8} \cup 1.0 \cdot A_{1.0} = \\ = \{(1,0.1), (2, max(0.1,0.2)), (3, max(0.1,0.2,\ldots,0.8)), \\ (4, max(0.1,\ldots,0.8,1)), \ldots (6, max(0.1,0.2)\} = \tilde{A} \end{array}$

Properties of fuzzy sets: convexity

- 6. Convexity of a fuzzy set
 - A fuzzy set $\tilde{A} \subset X$ is convex if and only if $\forall x_1, x_2 \in X$ and $\forall \lambda \in [0, 1]$ the following relation takes place: $\mu_{\tilde{A}}(\lambda \cdot x_1 + (1 - \lambda) \cdot x_2) \ge \min(\mu_{\tilde{A}}(x_1), \mu_{\tilde{A}}(x_2))$
 - ► The expression λ · x₁ + (1 − λ) · x₂ describes the segment situated between the points having the abscissa x₁ and x₂
 - ► The expression µ_Ã(λ · x₁ + (1 − λ) · x₂) describes the image of this segment through the function µ_Ã(x)
 - Equivalently, a fuzzy set Ã is convex iff all its α-level sets are convex
 - Which means that, if a fuzzy set is not convex, there exist α-level sets of this fuzzy set that are not convex, i.e., there exist segments x₁^αx₂^α which are "interrupted" (are not continues)

Ex: Represent graphically a continuous and convex fuzzy set and a continuous non-convex fuzzy set.

Properties of fuzzy sets: cardinality

- 7. Cardinality of a fuzzy set
 - Cardinality of a finite fuzzy set à ⊂ X, denoted |Ã| is defined as:

$$|\tilde{A}| = \sum_{i=1}^{n} \mu_{\tilde{A}}(x_i)$$

▶ For a continuous fuzzy set $\tilde{A} \subset X$, its cardinality is defined:

$$|\tilde{A}| = \int_{x} \mu_{\tilde{A}}(x) dx$$

if the integral exist

- 7' Relative cardinality of a fuzzy set
 - ▶ Is denoted $||\tilde{A}||$
 - ► Is defined as ||Ã|| = |Â|/|X|, if it exists, where X is the universe of discourse for the set Â

How to chose the membership functions

- Like in other aspects of the fuzzy sets theory, there are no clear "recipes" for choosing the membership functions of the fuzzy sets
- If we want to reduce the computations, we will prefer linear membership functions, i.e., triangles and trapeziums
- There are cases when we prefer non-linear membership functions (trigonometric, Gauss-type, etc):
 - There exist researchers that consider that linear membership functions do not provide the best results for some problems, while non-linear functions perform better
 - Sometimes the problem or the domain might need some types of membership functions
 - If we combine fuzzy sets theory with other methods, e.g., neural networks, it can be necessary to use membership functions that are suitable for these methods.

Outline

Fuzzy sets

Properties of fuzzy sets

Operations with fuzzy sets

Properties of the operations with fuzzy sets

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Operations for fuzzy sets: union, intersection, complement

- Given two fuzzy sets Ã = {(x, µ_Ã(x))|x ∈ X} and B̃ = {(x, µ_{B̃}(x))|x ∈ X} over the same universe of discourse X, we can define operations of union, intersection and complement. We define:
- ▶ the *union* of the fuzzy sets \tilde{A} si \tilde{B} as the fuzzy set $\tilde{C} = \tilde{A} \cup \tilde{B}$, given by $\tilde{C} = \{(x, \mu_{\tilde{C}}(x)) | x \in X\}$, where

$$\mu_{\tilde{C}}(x) = \max(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x))$$

▶ the *intersection* of the fuzzy sets \tilde{A} and \tilde{B} as the fuzzy set $\tilde{D} = \tilde{A} \cap \tilde{B}$, given by $\tilde{D} = \{(x, \mu_{\tilde{D}}(x)) | x \in X\}$, where

$$\mu_{\tilde{D}}(x) = \min(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x))$$

▶ the *complement* of \tilde{A} in X as the fuzzy set $\tilde{E} = \mathbb{C}_{\tilde{A}}X$ given by $\tilde{E} = \{(x, \mu_{\tilde{E}}(x)) | x \in X\}$, where

$$\mu_{\tilde{E}}(x) = 1 - \mu_{\tilde{A}}(x)$$

・ロト・1回ト・1回ト・1回ト 回・99(0)

Operations with fuzzy sets: inclusion, equality

- inclusion of fuzzy sets: given two fuzzy sets à and B̃ included in X, the inclusion à ⊆ B̃ takes place iff µ_Ã(x) ≤ µ_{B̃}(x), (∀)x ∈ X
- equality of two fuzzy sets: two fuzzy sets \tilde{A} and \tilde{B} included in X are equals iff $\mu_{\tilde{A}}(x) = \mu_{\tilde{B}}(x)$, $(\forall)x \in X$
- ► Equivalently, two fuzzy sets \tilde{A} and \tilde{B} included in X are equals iff $\tilde{A} \subseteq \tilde{B}$ and $\tilde{B} \subseteq \tilde{A}$

Operations with fuzzy sets: examples

1. Determine the union and intersection of the fuzzy sets $\tilde{A} =$ "comfortable house for a 4 persons - family" and \tilde{B} = "small house". where $\tilde{A} = \{(1,0.1), (2,0.5), (3,0.8), (4,1.0), (5,0.7), (6,0.2)\}$ and $\tilde{B} = \{(1,1), (2,0.8), (3,0.4), (4,0.1)\}$: $\tilde{A} \cup \tilde{B} = \{(1, \max(0.1, 1)), (2, \max(0.5, 0.8)), (3, \max(0.8, 0.4)), (3, \max(0.8, 0.4)$ $(4, \max(1, 0.1)), (5, \max(0.7, 0)), (6, \max(0.2, 0)) =$ $\{(1,1), (2,0.8), (3,0.8), (4,1), (5,0.7), (6,0.2)\}$ $\hat{A} \cap \hat{B} = \{(1, \min(0.1, 1)), (2, \min(0.5, 0.8)), (3, \min(0.8, 0.4)), (3, \min(0.8, 0.4)$ $(4, \min(1, 0.1)), (5, \min(0.7, 0)), (6, \min(0.2, 0)) =$ $\{(1, 0.1), (2, 0.5), (3, 0.4), (4, 0.1), (5, 0), (6, 0)\}$ $\tilde{A} \cup \tilde{B}$ can be read as "comfortable house for a 4 persons family or small", and $\tilde{A} \cap \tilde{B}$ as "comfortable house for a 4 persons - family and small"

Operations with fuzzy sets: examples (continued)

- 2. Determine $\mathbb{C}_{\tilde{A}}X$, where $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$: ("non-comfortable house for a 4 persons - family") $\mathbb{C}_{\tilde{A}}X = \{(1, 1-0.1), (2, 1-0.5), (3, 1-0.8), (4, 1-1), (5, 1-0.7), (6, 1-0.2), (7, 1-0), (8, 1-0), (9, 1-0), (10, 1-0)\} = \{(1, 0.9), (2, 0.5), (3, 0.2), (4, 0), (5, 0.3), (6, 0.8), (7, 1), (8, 1), (9, 1), (10, 1)\}$
- 3. Determine the union and intersection of the fuzzy sets $\tilde{A} =$ "real numbers close to 10" and $\tilde{B} =$ "real number considerably larger than 11".
 - Analytically: $\tilde{C} = \tilde{A} \cup \tilde{B}$ si $\tilde{D} = \tilde{A} \cap \tilde{B}$, where $\mu_{\tilde{C}}(x) = \max\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\},\ \mu_{\tilde{D}}(x) = \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}$

Graphically: (more suited in this case), in the next slides:

Example of operations with fuzzy sets: union

Example of operations with fuzzy sets: intersection

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Example of operations with fuzzy sets: exercises

- 1. Determine $\mathbb{C}_{\tilde{B}}X$, where \tilde{B} is the fuzzy set "small house", and $X = \{1, 2, \dots, 9, 10\}$
- 2. Determine the complement of a fuzzy set that has a continuous trapezoidal-shaped membership function
- 3. For this fuzzy set, determine the union and intersection between the fuzzy set and its complement. What do you see ?

Outline

Fuzzy sets

Properties of fuzzy sets

Operations with fuzzy sets Properties of the operations with fuzzy sets

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

Properties of the operations with crisp sets and fuzzy sets

For crisp sets in the universe of discourse X the following properties are true (after [NR74]):

1. Commutativity:

 $A \cup B = B \cup A$ $A \cap B = B \cap A$

2. Associativity:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$

3. Distributivity:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

4. Idempotency:

$$A \cup A = A$$
$$A \cap A = A$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties of the operations with crisp sets and fuzzy sets

5. Identity:

$$A \cup \emptyset = \emptyset \cup A = A$$
$$A \cup X = X \cup A = X$$
$$A \cap \emptyset = \emptyset \cap A = \emptyset$$
$$A \cap X = X \cap A = A$$

- 6. Transitivity: if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
- 7. Involution: $\overline{\overline{A}} = A$, where $\overline{A} = \mathbb{C}_A X$

8. De Morgan:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Properties of the operations with crisp sets and fuzzy sets

9. Absorption:

 $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$

10. Excluded middle laws (excluded middle laws):

$$A \cup \overline{A} = X$$
$$A \cap \overline{A} = \emptyset$$

- Proprieties 1–9 hold for fuzzy sets, too, but NOT the property 10.
- Some researchers consider this fact (non-fulfillment of the excluded middle laws) as being the main characteristic of fuzzy sets.

Axiomatization of the operations with fuzzy sets

- Bellmann and Giertz proposed a set de axioms (properties) that should be fulfilled by the union, intersection, and complement operations with fuzzy sets.
- ► They wanted to see if, based on a set of axioms, we can obtain also other operations than maximum for union, minimum for intersection, and 1 µ_ã(x) for intersection.
- Bellman and Giertz have shown that only the operators maximum for union, and respectively minimum for intersection fulfill their set of axioms
- However, for complement they could not obtain an unique operator.
- In order to obtain an unique operator for complement, they added the condition that the complement of 1/2 should be 1/2.

Conclusions: directions in fuzzy logic

- 1. The direction followed by mathematicians, who aim to:
 - on the one side, to give a theoretical foundation to the results, operators and formulas from fuzzy logic
 - on the other side, try to extend other domains, mathematical or non-mathematical, through the framework of fuzzy logic.
 - Hence, there exists fuzzy numbers, fuzzy arithmetic, fuzzy functions, fuzzy calculus, fuzzy probabilities, but also fuzzy automata, fuzzy flip-flops, fuzzy codes, fuzzy reliability, etc
- 2. The second direction is followed by engineers, economists, linguists, medical doctors, etc, who apply the results of fuzzy logic in their domains of activity
 - They must keep themselves informed on the results obtained by mathematicians.

CV Negoița and DA Ralescu. *Mulțimi vagi și aplicațiile lor.* Editura Tehnică, 1974.

H.-J. Zimmermann.

Fuzzy Set Theory – and Its Applications, Second, Revised Edition.

Kluwer Academic Publishers, 1991.