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Crisp (classic) sets, fuzzy sets

◮ Given an universe of discourse (crisp) X

◮ For a classic (crisp) set A ⊂ X , for each element x ∈ X , either
x ∈ A or x /∈ A.

◮ For the set A it can be defined a characteristic function
νA : X → {0, 1}, with νA(x) = 1 iff (if and only if) x ∈ A and
νA(x) = 0 iff x /∈ A

◮ For a fuzzy set Ã, an element x ∈ X belongs to the fuzzy set
Ã ⊂ X in a certain degree

◮ The characteristic function of a crisp set will be extended to
the membership function of a fuzzy set, which can take values
in the real numbers interval [0, 1]



Definitions

Definition
“If X is a collection of objects” (named the universe of discourse)
“denoted generically by x , then a fuzzy set Ã ⊂ X is a set of
ordered pairs

Ã = {(x , µ
Ã
(x))|x ∈ X}

where µ
Ã
(x) : X → [0, 1] is called membership function or degree

of membership (also, degree of compatibility or degree of truth).
of x in A” (Zimmermann [Zim91])

If the interval of real numbers [0, 1] is replaced with the discrete
set {0, 1}, then the fuzzy set Ã becomes a classic (crisp) set.



Fuzzy sets. Examples of fuzzy sets

◮ Fuzzy sets can be discrete or continuous

◮ The interval [0, 1] can be extended to [0, k], where k > 0

◮ It is possible to define fuzzy sets on more complex structures
than intervals or real numbers, e.g. L-fuzzy sets, where L is a
partially ordered set (see chapter 3, Extensions of fuzzy sets)

◮ Example of discrete fuzzy set (Zimmermann [Zim91]):

◮ MF: comfortable house for a 4 person family as a function of
the number of bedrooms:

◮ The universe discourse: X = {1, 2, . . . , 10}
◮ Ã ⊂ X will be

Ã = {(1, 0.1), (2, 0.5), (3, 0.8), (4, 1.0), (5, 0.7), (6, 0.2)}



Examples of fuzzy sets (cnt’d)

Example of continuous
fuzzy set: real numbers
close to 10

◮ X = R (the set of
real numbers)

◮ The membership
function of the fuzzy
set Ã ⊂ R:

µ
Ã
(x) =

1

1 + (x − 10)2

(1)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5  0  5  10  15  20

1/(1+(x-10)**2)

Figure 1: Ã with µ
Ã
(x) = 1

1+(x−10)2



Examples of fuzzy sets (cnt’d)

Example of a continuous fuzzy
set: real numbers considerably
larger than 11

◮ X = R (the set of real
numbers)

◮ The membership function of
the fuzzy set:B̃ ⊂ R:

µ
B̃
(x) =

{

(x−11)2

1+(x−11)2
if x ≥ 11

0, if x < 11

(2)
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Figure 2: B̃ with µ
B̃
(x)



Notations for fuzzy sets

1. Pairs (element, value) for discrete fuzzy sets (like in the
example with the comfortable house), respectively (generic
element, membership function) for continuous fuzzy sets: e.g.
(x , µ

Ã
(x))

2. Solely by stating the membership function (for continuous
fuzzy sets)

3. As a “sum” for discrete fuzzy sets, respectively “integral” for
continuous fuzzy sets (this notation may create confusions !!):

Ã =

n
∑

i=1

µ
Ã
(xi )

xi
=

µ
Ã
(x1)

x1
+

µ
Ã
(x2)

x2
+ . . .+

µ
Ã
(xn)

xn

Ã =

∫

µ
Ã
(x)

x

Caution, there are neither sums nor integrals here, these are

only notations !!!
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Properties (characteristics) of fuzzy sets: normal fuzzy sets

1. Normal fuzzy sets

◮ A fuzzy set is called normal if supx µÃ
(x) = 1, where sup is

the supremum of a fuzzy set

◮ The difference between the maximum and the supremum of a
set: the maximum belongs to the set, the supremum may
belong or not to that set

◮ If a fuzzy set is not normal, it can be normalized by dividing
its membership function by the supremum of the set, resulting
the normalized fuzzy set:

µ
Ãnorm

(x) =
µ
Ã
(x)

supx µÃ
(x)



Properties of fuzzy sets: support, core, boundary

2. The support of a fuzzy set

◮ The support of a fuzzy set (denoted supp) is the crisp set of
all x ∈ X for which µ

Ã
(x) > 0

◮ In the example with the comfortable house it is the set
supp(Ã) = {1, 2, 3, 4, 5, 6, 7}

◮ Usually the elements of a fuzzy set having the degree of
membership equal to 0 are not listed

3. The (core) of a fuzzy set:

◮ is the crisp set for which µ
Ã
(x) = 1

4. The (boundary) of a fuzzy set:

◮ is the crisp set for which 0 < µ
Ã
(x) < 1

Exercise: represent graphically the support, the core and the
boundary for a continuous trapezoidal fuzzy set.



Properties of a fuzzy set: α-level sets

5. The α-level sets ( or α-cuts):

◮ The α-level set (where α ∈ [0, 1]) of the fuzzy set Ã having
the membership function µ

Ã
(x) is the crisp set Aα for which

µ
Ã
(x) ≥ α

◮ We can define strong α cut as the crisp set A′
α
for which

µ
Ã
(x) > α

◮ In the example with the comfortable house, WHERE
Ã = {(1, 0.1), (2, 0.5), (3, 0.8), (4, 1.0), (5, 0.7), (6, 0.2)}, the
α-cuts of the fuzzy set Ã are:

◮ A0.1 = {1, 2, 3, 4, 5, 6}= suppÃ (the support of Ã)
◮ A0.2 = {2, 3, 4, 5, 6}
◮ A0.5 = {2, 3, 4, 5}
◮ A0.7 = {3, 4, 5}
◮ A0.8 = {3, 4}
◮ A1.0 = {4} = coreÃ



Properties of a fuzzy set: α-level sets

◮ It can be proved that for any fuzzy set Ã, it holds:

Ã =
⋃

α

α · Aα

◮ Which means that, any fuzzy set can be written as the union
for all the values of α of the product between α and the
α-cuts of the fuzzy set

◮ This property is very important and it connects the fuzzy and
the crisp sets

◮ It is also very useful for proving different properties of fuzzy
sets (some properties are easier to be proved for crisp sets)



Properties of a fuzzy set: α-level sets

◮ We will illustrate this property on the example with the
comfortable house:
◮ α · Aα is the fuzzy set in which each element will hace the

membership function equal with α.
◮ 0.1 · A0.1 = {(1, 0.1), (2, 0.1), (3, 0.1), (4, 0.1), (5, 0.1), (6, 0.1)}
◮ 0.2 · A0.2 = {(2, 0.2), (3, 0.2), (4, 0.2), (5, 0.2), (6, 0.2)}
◮ . . .
◮ 0.8 · A0.8 = {(3, 0.8), (4, 0.8)}
◮ 1.0 · A1.0 = {(4, 1.0)}
◮ The union of two or more fuzzy sets is defined as the

maximum between their membership function, hence
◮ 0.1 · A0.1 ∪ 0.2 · A0.2 ∪ . . . ∪ 0.8 · A0.8 ∪ 1.0 · A1.0 =

= {(1, 0.1), (2,max(0.1, 0.2)), (3,max(0.1, 0.2, . . . , 0.8)),
(4,max(0.1, . . . , 0.8, 1)), . . . (6,max(0.1, 0.2)} = Ã



Properties of fuzzy sets: convexity

6. Convexity of a fuzzy set

◮ A fuzzy set Ã ⊂ X is convex if and only if ∀x1, x2 ∈ X and
∀λ ∈ [0, 1] the following relation takes place:
µ
Ã
(λ · x1 + (1− λ) · x2) ≥ min(µ

Ã
(x1), µÃ

(x2))

◮ The expression λ · x1 + (1− λ) · x2 describes the segment
situated between the points having the abscissa x1 and x2

◮ The expression µ
Ã
(λ · x1 + (1− λ) · x2) describes the image of

this segment through the function µ
Ã
(x)

◮ Equivalently, a fuzzy set Ã is convex iff all its α-level sets
are convex

◮ Which means that, if a fuzzy set is not convex, there exist
α-level sets of this fuzzy set that are not convex, i.e., there
exist segments xα1 x

α

2 which are “interrupted” (are not
continues)

Ex: Represent graphically a continuous and convex fuzzy set and a
continuous non-convex fuzzy set.



Properties of fuzzy sets: cardinality

7. Cardinality of a fuzzy set

◮ Cardinality of a finite fuzzy set Ã ⊂ X , denoted |Ã| is defined
as:

|Ã| =
n

∑

i=1

µ
Ã
(xi )

◮ For a continuous fuzzy set Ã ⊂ X , its cardinality is defined:

|Ã| =

∫

x

µ
Ã
(x)dx

if the integral exist

7’ Relative cardinality of a fuzzy set

◮ Is denoted ||Ã||

◮ Is defined as ||Ã|| = |Ã|
|X | , if it exists, where X is the universe of

discourse for the set Ã



How to chose the membership functions

◮ Like in other aspects of the fuzzy sets theory, there are no
clear “recipes” for choosing the membership functions of the
fuzzy sets

◮ If we want to reduce the computations, we will prefer linear
membership functions, i.e., triangles and trapeziums

◮ There are cases when we prefer non-linear membership
functions (trigonometric, Gauss-type, etc):

◮ There exist researchers that consider that linear membership
functions do not provide the best results for some problems,
while non-linear functions perform better

◮ Sometimes the problem or the domain might need some types
of membership functions

◮ If we combine fuzzy sets theory with other methods, e.g.,
neural networks, it can be necessary to use membership
functions that are suitable for these methods.
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Operations for fuzzy sets: union, intersection, complement

◮ Given two fuzzy sets Ã = {(x , µ
Ã
(x))|x ∈ X} and

B̃ = {(x , µ
B̃
(x))|x ∈ X} over the same universe of discourse

X , we can define operations of union, intersection and
complement. We define:

◮ the union of the fuzzy sets Ã si B̃ as the fuzzy set C̃ = Ã∪ B̃,
given by C̃ = {(x , µ

C̃
(x))|x ∈ X}, where

µ
C̃
(x) = max(µ

Ã
(x), µ

B̃
(x))

◮ the intersection of the fuzzy sets Ã and B̃ as the fuzzy set
D̃ = Ã ∩ B̃ , given by D̃ = {(x , µ

D̃
(x))|x ∈ X}, where

µ
D̃
(x) = min(µ

Ã
(x), µ

B̃
(x))

◮ the complement of Ã in X as the fuzzy set Ẽ = C
Ã
X given by

Ẽ = {(x , µ
Ẽ
(x))|x ∈ X}, where

µ
Ẽ
(x) = 1− µ

Ã
(x)



Operations with fuzzy sets: inclusion, equality

◮ inclusion of fuzzy sets: given two fuzzy sets Ã and B̃ included
in X , the inclusion Ã ⊆ B̃ takes place iff µ

Ã
(x) ≤ µ

B̃
(x),

(∀)x ∈ X

◮ equality of two fuzzy sets: two fuzzy sets Ã and B̃ included in
X are equals iff µ

Ã
(x) = µ

B̃
(x), (∀)x ∈ X

◮ Equivalently, two fuzzy sets Ã and B̃ included in X are equals
iff Ã ⊆ B̃ and B̃ ⊆ Ã



Operations with fuzzy sets: examples

1. Determine the union and intersection of the fuzzy sets Ã =
“comfortable house for a 4 persons - family” and B̃ = “small
house”, where
Ã = {(1, 0.1), (2, 0.5), (3, 0.8), (4, 1.0), (5, 0.7), (6, 0.2)} and
B̃ = {(1, 1), (2, 0.8), (3, 0.4), (4, 0.1)}:
Ã∪B̃ = {(1,max(0.1, 1)), (2,max(0.5, 0.8)), (3,max(0.8, 0.4)),
(4,max(1, 0.1)), (5,max(0.7, 0)), (6,max(0.2, 0)} =
{(1, 1), (2, 0.8), (3, 0.8), (4, 1), (5, 0.7), (6, 0.2)}
Ã ∩ B̃ = {(1,min(0.1, 1)), (2,min(0.5, 0.8)), (3,min(0.8, 0.4)),
(4,min(1, 0.1)), (5,min(0.7, 0)), (6,min(0.2, 0)} =
{(1, 0.1), (2, 0.5), (3, 0.4), (4, 0.1), (5, 0), (6, 0)}
Ã ∪ B̃ can be read as “comfortable house for a 4 persons -
family or small”, and Ã ∩ B̃ as “comfortable house for a 4
persons - family and small”



Operations with fuzzy sets: examples (continued)

2. Determine C
Ã
X , where X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}:

(“non-comfortable house for a 4 persons - family”)
C
Ã
X = {(1, 1− 0.1), (2, 1− 0.5), (3, 1− 0.8), (4, 1− 1), (5, 1−

0.7), (6, 1− 0.2), (7, 1− 0), (8, 1− 0), (9, 1− 0), (10, 1− 0)} =
{(1, 0.9), (2, 0.5), (3, 0.2), (4, 0), (5, 0.3), (6, 0.8), (7, 1), (8, 1),
(9, 1), (10, 1)}

3. Determine the union and intersection of the fuzzy sets Ã =
“real numbers close to 10” and B̃ = “real number
considerably larger than 11”.
◮ Analytically: C̃ = Ã ∪ B̃ si D̃ = Ã ∩ B̃, where

µ
C̃
(x) = max{µ

Ã
(x), µ

B̃
(x)},

µ
D̃
(x) = min{µ

Ã
(x), µ

B̃
(x)}

. . .
◮ Graphically: (more suited in this case), in the next slides:



Example of operations with fuzzy sets: union
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Figure 3: Ã with µ
Ã
(x)
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Figure 4: B̃ with µ
B̃
(x)
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Figure 5: Ã, B̃ and Ã ∪ B̃
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Figure 6: Ã ∪ B̃



Example of operations with fuzzy sets: intersection
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Figure 7: µ
Ã
(x)
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Figure 8: µ
B̃
(x)
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Figure 9: Ã, B̃ and Ã ∩ B̃
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Figure 10: Ã ∩ B̃ (detail)



Example of operations with fuzzy sets: exercises

1. Determine C
B̃
X , where B̃ is the fuzzy set “small house”, and

X = {1, 2, . . . , 9, 10}

2. Determine the complement of a fuzzy set that has a
continuous trapezoidal-shaped membership function

3. For this fuzzy set, determine the union and intersection
between the fuzzy set and its complement. What do you see ?
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Properties of the operations with crisp sets and fuzzy sets
For crisp sets in the universe of discourse X the following
properties are true (after [NR74]):

1. Commutativity:
A ∪ B = B ∪ A

A ∩ B = B ∩ A

2. Associativity:

(A ∪ B) ∪ C = A ∪ (B ∪ C )

(A ∩ B) ∩ C = A ∩ (B ∩ C )

3. Distributivity:

A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

4. Idempotency:
A ∪ A = A

A ∩ A = A



Properties of the operations with crisp sets and fuzzy sets

5. Identity:
A ∪ ∅ = ∅ ∪ A = A

A ∪ X = X ∪ A = X

A ∩ ∅ = ∅ ∩ A = ∅

A ∩ X = X ∩ A = A

6. Transitivity: if A ⊆ B and B ⊆ C , then A ⊆ C

7. Involution: A = A, where A = CAX

8. De Morgan:
A ∪ B = A ∩ B

A ∩ B = A ∪ B



Properties of the operations with crisp sets and fuzzy sets

9. Absorption:
A ∪ (A ∩ B) = A

A ∩ (A ∪ B) = A

10. Excluded middle laws (excluded middle laws):

A ∪ A = X

A ∩ A = ∅

◮ Proprieties 1–9 hold for fuzzy sets, too, but NOT the property
10.

◮ Some researchers consider this fact (non-fulfillment of the
excluded middle laws) as being the main characteristic of
fuzzy sets.



Axiomatization of the operations with fuzzy sets

◮ Bellmann and Giertz proposed a set de axioms (properties)
that should be fulfilled by the union, intersection, and
complement operations with fuzzy sets.

◮ They wanted to see if, based on a set of axioms, we can
obtain also other operations than maximum for union,
minimum for intersection, and 1− µ

Ã
(x) for intersection.

◮ Bellman and Giertz have shown that only the operators
maximum for union, and respectively minimum for
intersection fulfill their set of axioms

◮ However, for complement they could not obtain an unique
operator.

◮ In order to obtain an unique operator for complement, they
added the condition that the complement of 1/2 should be
1/2.



Conclusions: directions in fuzzy logic

1. The direction followed by mathematicians, who aim to:

◮ on the one side, to give a theoretical foundation to the results,
operators and formulas from fuzzy logic

◮ on the other side, try to extend other domains, mathematical
or non-mathematical, through the framework of fuzzy logic.

◮ Hence, there exists fuzzy numbers, fuzzy arithmetic, fuzzy
functions, fuzzy calculus, fuzzy probabilities, but also fuzzy
automata, fuzzy flip-flops, fuzzy codes, fuzzy reliability, etc

2. The second direction is followed by engineers, economists,
linguists, medical doctors, etc, who apply the results of fuzzy
logic in their domains of activity
◮ They must keep themselves informed on the results obtained

by mathematicians.
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