Measure of fuzziness or How "fuzzy" is a fuzzy set ?

Doru Todinca

Departament of Computers and Information Technology UPT

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Measure of fuzziness

- Researchers aimed to find a measure of fuzziness (or MOF), which is a measure of the degree of fuzziness of a fuzzy set.
- Hence, MOF indicates the degree of fuzziness of a fuzzy set
- The problem has been approached in several manners:
 - 1. Using the concep of entropy, introduced by Claude Shannon (de Luca and Termini)
 - Starting from the fact that, in general, the fuzzy sets do not comply to the excluded middle laws. More exactly, the MOF was based on the distinction between a set and its complement (the smaller the difference the "more fuzzy" is the fuzzy set !)
- Next, we will discuss the two approaches, for the case when the support of the fuzzy set *Ã* is finite.

Entropy-based MOF

Let $\mu_{\tilde{A}}(x)$ be the memebership function of the fuzzy set \tilde{A} for $x \in X$, X finite. A function $d(\tilde{A})$ measure of fuzziness will have the following properties:

1.
$$d(ilde{A})=0$$
 if $ilde{A}$ is a crisp set in X

- 2. $d(\tilde{A})$ has a unique maximum for the fuzzy set with $\mu_{\tilde{A}}(x) = \frac{1}{2} \ (\forall) x \in X$
- 3. $d(\tilde{A}) \ge d(\tilde{A}')$ daca \tilde{A}' is "more crisp" than \tilde{A} , i.e, either $\mu_{\tilde{A}'}(x) \le \mu_{\tilde{A}}(x)$ for $\mu_{\tilde{A}}(x) \le \frac{1}{2}$, or $\mu_{\tilde{A}'}(x) \ge \mu_{\tilde{A}}(x)$ for $\mu_{\tilde{A}}(x) \ge \frac{1}{2}$

A D N A 目 N A E N A E N A B N A C N

4.
$$d(\mathbb{C}\tilde{A}) = d(\tilde{A})$$

MOF 1, based on entropy

Definition

The entropy, as a measure of fuzziness is defined as:

$$d(ilde{A}) = H(ilde{A}) + H(\mathbb{C} ilde{A})$$

, $x \in X$, where:

$$H(\tilde{A}) = -K \sum_{i=1}^{n} \mu_{\tilde{A}}(x_i) \cdot \ln(\mu_{\tilde{A}}(x_i))$$

, where *n* is the number of elements in the support of the fuzzy set \tilde{A} and *K* is a positive constant.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

MOF 1, based on entropy

Using Shannon's function $S(x) = -x \cdot \ln(x) - (1-x) \cdot \ln(1-x)$, the previous expression can be simplifies as follows:

Definition

Entropy *d* as a measure of fuzziness of a fuzzy set $\tilde{A} = \{(x, \mu_{\tilde{A}}(x))\}$ is defined by:

$$d(\tilde{A}) = K \cdot \sum_{i=1}^{n} S(\mu_{\tilde{A}}(x_i))$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In order to measure the distance between a fuzzy set and its complement, Yager suggested the following metric:

Definition

$$D_{\rho}(\tilde{A}, \mathbb{C}\tilde{A}) = \left[\sum_{i=1}^{n} |\mu_{\tilde{A}}(x_i) - \mu_{\mathbb{C}\tilde{A}}(x_i)|^{\rho}\right]^{1/\rho}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

, with p = 1, 2, 3...

MOF 2

If we denote $S = supp(\tilde{A})$ the suport of the fuzzy set \tilde{A} , then $D_p(S,\mathbb{C}S) = |S|^{1/p}$

Definition A MOF for the set \tilde{A} can be defined as:

$$f_{
ho}(ilde{A}) = 1 - rac{D_{
ho}(ilde{A}, \mathbb{C} ilde{A})}{|sup
ho(ilde{A})|^{1/
ho}}$$

 $f_p(\tilde{A}) \in [0,1]$ and $f_p(\tilde{A})$ satisfies also the proprerties 1–4 required by de Luca and Termini.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

MOF 2

For p = 1 $D_p(\tilde{A}, \mathbb{C}\tilde{A})$ yields the Hamming metric (distance):

$$D_1(\tilde{A},\mathbb{C}\tilde{A}) = \sum_{i=1}^n |\mu(x_i) - \mu_{\mathbb{C}\tilde{A}}(x_i)|$$

Since $\mu_{\mathbb{C} ilde{\mathcal{A}}}(x) = 1 - \mu_{ ilde{\mathcal{A}}}(x)$, it results that

$$D_1(\tilde{A}, \mathbb{C}\tilde{A}) = \sum_{i=1}^n |2 \cdot \mu_{\tilde{A}}(x_i) - 1|$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

MOF 2

For p = 2 we obtain an Euclidean metric :

$$D_2(\tilde{A}, \mathbb{C}\tilde{A}) = \left(\sum_{i=1}^n (\mu_{\tilde{A}}(x_i) - \mu_{\mathbb{C}\tilde{A}}(x_i))^2\right)^{1/2}$$

Since $\mu_{\mathbb{C}\tilde{A}}=1-\mu_{\tilde{A}}$, we have:

$$D_2(ilde{A},\mathbb{C} ilde{A}) = \left(\sum_{i=1}^n (2\cdot \mu_{ ilde{A}}(x_i)-1)^2
ight)^{1/2}$$