Elements of fuzzy arithmetic Chapter 7

Doru Todinca

Department of Computers and Information Technology UPT

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Confidence intervals

Fuzzy numbers

Operations with fuzzy numbers

Addition of fuzzy numbers Subtraction of fuzzy numbers Multiplication of fuzzy numbers Division of fuzzy numbers Examples of operations with fuzzy numbers

Sources

This lecture contains text, figures, formulae, etc, taken (and adapted) from the book Arnold Kaufmann, Madan M. Gupta, "Introduction to fuzzy arithmetic: theory and applications", Van Nostrand Reinhold, 1991, [KG91].

Confidence intervals

Fuzzy numbers

Operations with fuzzy numbers

Addition of fuzzy numbers Subtraction of fuzzy numbers Multiplication of fuzzy numbers Division of fuzzy numbers Examples of operations with fuzzy numbers

Confidence intervals: definitions

- In many practical situations we can say about a value only that it is situated inside a closed interval in ℝ, i.e., between two values, a₁, a₂ ∈ ℝ, a₁ ≤ a₂
- Definition: such an interval of real numbers is called confidence interval or interval of confidence, and is denoted A = [a₁, a₂]
- A confidence interval can be open at left (e.g., A = (a₁, a₂]), open at right, or open at left and right (i.e., open, e.g., A = (a₁, a₂))

• or it is possible that $a_1 = -\infty$ and/or $a_2 = +\infty$

Operations with confidence intervals: addition and subtraction

- If we know that x ∈ [a₁, a₂], y ∈ [b₁, b₂] (where A = [a₁, a₂] and B = [b₁, b₂]), what can we say about x + y, x y, x ⋅ y, x/y? (about x ⋅ y and x/y) we can discuss only in ℝ⁺)
- Evidently, $x + y \in [a_1 + b_1, a_2 + b_2], x y \in [a_1 b_2, a_2 b_1]$
- ► Notations: $A(+)B = [a_1 + b_1, a_2 + b_2],$ $A(-)B = [a_1 - b_2, a_2 - b_1]$
- ► A particular case of subtraction is the image (the opposite) of a confidence interval A, given by A⁻ = [-a₂, -a₁]
- ▶ We note that $A(+)A^- = [a_1 a_2, a_2 a_1] \neq 0$ in general, where the interval 0 is defined 0 = [0, 0]
- ▶ In general any real number $t \in \mathbb{R}$ can be represented as a confidence interval in the form [t, t]
- ► The set of the interval of confidence in R is associative, commutative and has a neutral element (0 = [0,0]) for addition, but the image is not symmetrical.

Operations with confidence intervals: multiplication and division

 The multiplication and division of intervals of confidence in R⁺ are defined as:

$$\begin{array}{l} A(\cdot)B = [a_1, a_2] \cdot [b_1, b_2] = [a_1 \cdot b_1, a_2 \cdot b_2] \\ A(:)B = [a_1, a_2](:)[b_1, b_2] = [\frac{a_1}{b_2}, \frac{a_2}{b_1}], \text{ where } b_1, b_2 \neq 0 \end{array}$$

- ▶ The inverse of the interval $A = [a_1, a_2]$ is defined as $A^{-1} = [\frac{1}{a_2}, \frac{1}{a_1}]$, where $a_1, a_2 \neq 0$
- The set of confidence intervals in ℝ⁺ is associative, commutative, has a neutral element (1 = [1, 1]) for multiplication, but it is not symmetrical because A(:)A = A(·)A⁻¹ = [a₁, a₂](:)[a₁, a₂] = [a₁/a₂, a₂/a₁] ≠ [1, 1] = 1

Confidence intervals

Fuzzy numbers

Operations with fuzzy numbers

Addition of fuzzy numbers Subtraction of fuzzy numbers Multiplication of fuzzy numbers Division of fuzzy numbers Examples of operations with fuzzy numbers

Fuzzy numbers: definitions

Definition

A *fuzzy number*, or *uncertain number*, in \mathbb{R} is a fuzzy subset in \mathbb{R} which is normal and convex.

- Kaufmann and Gupta consider a fuzzy number as the association between confidence intervals and *presumption levels*, (*levels of presumptions*):
- It is considered that for α = 1 we have the maximum presumption about the value of the fuzzy number, and for α = 0 we have the minimum level of presumption.
- $\forall \alpha \in [0, 1]$ it is possible to establish a level of presumption $A^{\alpha} = [a_1^{(\alpha)}, a_2^{(\alpha)}]$
- ▶ It must be fulfilled the condition that if α increases, the interval of confidence never increases, i.e., if $\alpha_1 \leq \alpha_2$ then $[a_1^{(\alpha_2)}, a_2^{(\alpha_2)}] \subseteq [a_1^{(\alpha_1)}, a_2^{(\alpha_1)}]$

Confidence intervals

Fuzzy numbers

Operations with fuzzy numbers

Addition of fuzzy numbers Subtraction of fuzzy numbers Multiplication of fuzzy numbers Division of fuzzy numbers Examples of operations with fuzzy numbers

General considerations

- The operations with fuzzy numbers will be defined with two methods, which are equivalent:
 - Using the extension principles
 - Using the presumption levels, which are equivalent with the α-cuts (α-level sets) of a fuzzy number.
- It can be proved that the two approaches (methods) for the definition of the operations with fuzzy numbers are equivalent.
- ▶ In the proof it is used the fact that any fuzzy set is the union of all its α -level sets, with $\alpha \in [0, 1]$

Confidence intervals

Fuzzy numbers

Operations with fuzzy numbers Addition of fuzzy numbers

Subtraction of fuzzy numbers Multiplication of fuzzy numbers Division of fuzzy numbers Examples of operations with fuzzy numbers

Addition of fuzzy numbers

Definition

Given two fuzzy numbers \tilde{A} and \tilde{B} in \mathbb{R} , their sum $\tilde{A} \oplus \tilde{B}$ is defined as: $\forall x, y, z \in \mathbb{R}$

$$\mu_{\tilde{A}\oplus\tilde{B}}(z) = \sup_{z=x+y} (\min(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(y)))$$

, or, using the notations from [KG91],

$$\mu_{\tilde{A}\oplus\tilde{B}}(z) = \bigvee_{z=x+y} (\mu_{\tilde{A}}(x) \wedge \mu_{\tilde{B}}(y))$$

Definition

Using α -cuts, the addition of two fuzzy numbers is defined: $A^{\alpha}(+)B^{\alpha} = [a_1^{\alpha}, a_2^{\alpha}](+)[b_1^{\alpha}, b_2^{\alpha}] = [a_1^{\alpha} + b_1^{\alpha}, a_2^{\alpha} + b_2^{\alpha}]$

The operations from the first definition are used for discrete fuzzy numbers (for example in \mathbb{Z}), while the second definition is used for continuous fuzzy numbers (in \mathbb{R}).

Confidence intervals

Fuzzy numbers

Operations with fuzzy numbers

Addition of fuzzy numbers Subtraction of fuzzy numbers

Multiplication of fuzzy numbers Division of fuzzy numbers Examples of operations with fuzzy numbers

Subtraction of fuzzy numbers

Is defined: $\forall x, y, z \in \mathbb{R}$

$$\mu_{\tilde{A}\ominus\tilde{B}}(z) = \sup_{z=x-y}(\min(\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(y)))$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

or:

$$\begin{array}{l} A^{\alpha}(-)B^{\alpha} = [a_{1}^{\alpha}, a_{2}^{\alpha}](-)[b_{1}^{\alpha}, b_{2}^{\alpha}] = [a_{1}^{\alpha} - b_{2}^{\alpha}, a_{2}^{\alpha} - b_{1}^{\alpha}] \text{ because} \\ B^{-} = [b_{1}^{\alpha}, b_{2}^{\alpha}]^{-} = [-b_{2}^{\alpha}, -b_{1}^{\alpha}] \end{array}$$

Confidence intervals

Fuzzy numbers

Operations with fuzzy numbers

Addition of fuzzy numbers Subtraction of fuzzy numbers

Multiplication of fuzzy numbers

Division of fuzzy numbers Examples of operations with fuzzy numbers

Multiplication of fuzzy numbers

Is defined in \mathbb{R}^+ : $\forall x, y, z \in \mathbb{R}^+$

$$\mu_{\tilde{A}\odot\tilde{B}}(z) = \sup_{z=x\cdot y} (\min(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(y)))$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

or:

$$A^{\alpha}(\cdot)B^{\alpha} = [a_1^{\alpha}, a_2^{\alpha}](\cdot)[b_1^{\alpha}, b_2^{\alpha}] = [a_1^{\alpha} \cdot b_1^{\alpha}, a_2^{\alpha} \cdot b_2^{\alpha}]$$

Confidence intervals

Fuzzy numbers

Operations with fuzzy numbers

Addition of fuzzy numbers Subtraction of fuzzy numbers Multiplication of fuzzy numbers Division of fuzzy numbers Examples of operations with fuzzy numbers

Division of fuzzy numbers

Is defined in \mathbb{R}^+ : $\forall x, y, z \in \mathbb{R}^+$ $\mu_{\tilde{A} \otimes \tilde{B}}(z) = \sup_{z=x/y} (\min(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(y)))$ or: $A^{\alpha}(/)B^{\alpha} = [a_1^{\alpha}, a_2^{\alpha}](/)[b_1^{\alpha}, b_2^{\alpha}] = [\frac{a_1^{\alpha}}{b_2^{\alpha}}, \frac{a_2^{\alpha}}{b_1^{\alpha}}]$ because $B_{\alpha}^{-1} = [b_1^{\alpha}, b_2^{\alpha}]^{-1} = [\frac{1}{b_{\alpha}^{\alpha}}, \frac{1}{b_1^{\alpha}}]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Special fuzzy numbers and algebraic properties

- A singleton t can be extended to a fuzzy number t
- Special fuzzy numbers are 0 si 1
- The set of fuzzy numbers in ℝ is associative and commutative for addition, there is a neutral (the number 0), but the image is not symmetric because in general Ã ⊖ Ã ≠ 0

The multiplication of fuzzy numbers in ℝ⁺ is associative, commutative, there is a neutral (the number 1), but the inverse is not symmetric, because in general à ⊘ Ã ≠ 1

Confidence intervals

Fuzzy numbers

Operations with fuzzy numbers

Addition of fuzzy numbers Subtraction of fuzzy numbers Multiplication of fuzzy numbers Division of fuzzy numbers Examples of operations with fuzzy numbers

Operations with discrete fuzzy numbers

- For operations with discrete fuzzy numbers it is applied the first set of formulae (the first method) and we work based on *extension principle* (like in the exemple from Chapter 3, from the Extension principle).
- For addition and subtraction we do like in that example: we look for all pairs of numbers x and y whose sum or difference is equal with z, and we apply the extension principle
- For multiplication (only for positive numbers), at the left of the normal value (for which µ = 1) we take into account all couplets where x ⋅ y ≤ z, and at the right of the normal value we take into account all couplets for which x ⋅ y ≥ z. Also, we compute values of z for which µ = 1.
- It will result a number which is increasing (more precisely, non-decreasing) to the left of the normal value, and decreasing (non-increasing) to the right of the normal value.

Operations with continuous fuzzy numbers in $\mathbb{R},$ respectively in \mathbb{R}^+

- For continuous fuzzy numbers we work with α -level sets
- In general a fuzzy number is given as:

$$\mu_{\tilde{\mathcal{A}}}(x) = \begin{cases} 0, & \text{if } x \leq l_1 \\ f_1(x), & \text{if } l_1 \leq x \leq l_2 \\ f_2(x), & \text{if } l_2 \leq x \leq l_3 \\ 0, & \text{if } l_3 \leq x \end{cases}$$

, where f_1 is an increasing function, and f_2 is a decreasing function.

- Figure !
- We make $\alpha = f_1(a_1^{\alpha})$ and it results $a_1^{\alpha} = f_1^{-1}(\alpha)$, and similar from $\alpha = f_2(a_2^{\alpha})$ it results $a_2^{\alpha} = f_2^{-1}(\alpha)$

Operations with continuous fuzzy numbers in $\mathbb{R},$ respectively in \mathbb{R}^+

The second fuzzy number is given as:

$$\mu_{\tilde{B}}(x) = \begin{cases} 0, & \text{if } x \le m_1 \\ g_1(x), & \text{if } m_1 \le x \le m_2 \\ g_2(x), & \text{if } m_2 \le x \le m_3 \\ 0, & \text{if } m_3 \le x \end{cases}$$

, where g_1 is an increasing, and g_2 a decreasing function

- We make α = g₁(b₁^α) and it results b₁^α = g₁⁻¹(α) and similar from α = g₂(a₂^α) it results b₂^α = g₂⁻¹(α)
- ► Then we make A^α ⊛ B^α = [a₁^α, a₂^α] ⊛ [b₁^α, b₂^α] = [c₁^α, c₂^α], where the operation * can be addition, subtraction, multiplication or division.
- From α = h₁(c₁^α) and from α = h₂(c₂^α) we obtain the membership functions of the resulted fuzzy number, on intervals: y = h₁(x) and y = h₂(x)

Examples for triangular fuzzy numbers

- A triangular fuzzy number is denoted $[m_1, m_2, m_3]$, where $m_1 \le m_2 \le m_3 \in \mathbb{R}$ (or \mathbb{R}^+ for multiplication and division) are the vertices of the triangle $(\mu(m_1) = \mu(m_3) = 0$ and $\mu(m_2) = 1$
- The sum and the difference of 2 triangular fuzzy numbers give a triangular fuzzy number,
- For addition, the coordinates of the sum are the sum of the coordinates with the same index
- ► Subtraction means the addition with the opposite number (the image), which is [-m₃, -m₂, -m₁]
- The coordinates for multiplication are computed similar to addition, i.e., by the multiplication of the coordinates with the same index, but the multiplication does not preserve the linearity.
- ▶ Division means the multiplication of the first number with the inverse of thhe second number, which is given by $\begin{bmatrix} 1\\m_3, \frac{1}{m_2}, \frac{1}{m_1} \end{bmatrix}$

Representation of triangular fuzzy numbers by membership functions

If a triangular fuzzy number A has the coordinates [m₁, m₂, m₃], then its membership function is:

$$\mu_{\tilde{A}}(x) = \begin{cases} 0, & \text{if } x \le m_1 \\ \frac{x - m_1}{m_2 - m_1}, & \text{if } m_1 \le x \le m_2 \\ \frac{m_3 - x}{m_3 - m_2}, & \text{if } m_2 \le x \le m_3 \\ 0, & \text{if } x \ge m_3 \end{cases}$$

• We want to obtain A^{α} , where $A^{\alpha} = [a_1^{\alpha}, a_2^{\alpha}]$

- From $\frac{x-m_1}{m_2-m_1} = \alpha$ it results $x = m_1 + \alpha \cdot (m_2 m_1)$
- Which means $a_1^{lpha} = m_1 + \alpha \cdot (m_2 m_1)$
- Similar, from $\frac{m_3-x}{m_3-m_2} = \alpha$ we obtain $x = m_3 \alpha \cdot (m_3 m_2)$ which means $a_2^{\alpha} = m_3 - \alpha \cdot (m_3 - m_2)$

- Here we present the example 1.5, pp. 15–16, from [KG91]
- We add the triangular fuzzy numbers A = [−5, −2, 1] and B = [−3, 4, 12] and we will obtain the triangular fuzzy number C = A(+)B = [−8, 2, 13]
- The fuzzy number A can be written:

$$\mu_{\tilde{A}}(x) = \begin{cases} 0, & \text{if } x \le -5 \\ \frac{x}{3} + \frac{5}{3}, & \text{if } -5 \le x \le -2 \\ -\frac{x}{3} + \frac{1}{3}, & \text{if } -2 \le x \le 1 \\ 0, & \text{if } x \ge 1 \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Making $\mu_A(x) = \alpha$ we obtain for a_1^{α} : $\alpha = \frac{a_1^{\alpha}}{3} + \frac{5}{3}$ $\Rightarrow a_1^{\alpha} = 3 \cdot \alpha - 5$
- Similar, for a_2^{α} : $\alpha = -\frac{a_2^{\alpha}}{3} + \frac{1}{3} \Rightarrow a_2^{\alpha} = -3 \cdot \alpha + 1$ Hence $A^{\alpha} = [a_1^{\alpha}, a_2^{\alpha}] = [3\alpha - 5, -3\alpha + 1]$

The fuzzy number B can be written:

$$\mu_{\tilde{B}}(x) = \begin{cases} 0, & \text{if } x \leq -3 \\ \frac{x}{7} + \frac{3}{7}, & \text{if } -3 \leq x \leq 4 \\ -\frac{x}{8} + \frac{12}{8}, & \text{if } 4 \leq x \leq 12 \\ 0, & \text{if } x \geq 12 \end{cases}$$

• Making
$$\mu_B(x) = \alpha$$
 we obtain for b_1^{α} : $\alpha = \frac{b_1^{\alpha}}{7} + \frac{3}{7}$
 $\Rightarrow b_1^{\alpha} = 7 \cdot \alpha - 3$

- Similar, for b_2^{α} : $\alpha = -\frac{b_2^{\alpha}}{8} + \frac{12}{8} \Rightarrow b_2^{\alpha} = -8 \cdot \alpha + 12$
- Hence $B^{\alpha} = [b_1^{\alpha}, b_2^{\alpha}] = [7\alpha 3, -8\alpha + 12]$
- ► Then: $A^{\alpha}(+)B^{\alpha} = [3\alpha 5, -3\alpha + 1](+)[7\alpha 3, -8\alpha + 12]$
- Hence $C^{\alpha} = A^{\alpha}(+)B^{\alpha} = [10\alpha 8, -11\alpha + 13]$

From C^α = (c₁^α, c₂^α) = [10α − 8, −11α + 13] we obtain the membership function µ_C(x) of the fuzzy number C

From
$$x = c_1^{\alpha} = 10\alpha - 8$$
 it results $\mu_C(x) = \alpha = \frac{x}{10} + \frac{8}{10}$ for $-8 \le x \le 2$

- From $x = c_2^{\alpha} = -11\alpha + 13$ it results $\mu_C(x) = \alpha = -\frac{x}{11} + \frac{13}{11}$ for $2 \le x \le 13$
- Hence, the fuzzy C can be written:

$$\mu_{\tilde{C}}(x) = \begin{cases} 0, & \text{if } x \le -8 \\ \frac{x}{10} + \frac{8}{10}, & \text{if } -8 \le x \le 2 \\ -\frac{x}{11} + \frac{13}{11}, & \text{if } 2 \le x \le 13 \\ 0, & \text{if } x \ge 13 \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Comment: The vertices of the triangular fuzzy number C = A(+)B are obtained by making α equal with 0, respectively with 1 in the relations which describe c₁^α and c₂^α:
- Making $\alpha = 0$, $10\alpha 8$ becomes -8, and $-11\alpha + 13$ is equal with 13;
- For $\alpha = 1$ we obtain $10\alpha 8 = -11\alpha + 13 = 2$
- Hence, as expected, the result of the addition is the triangular fuzzy number [-8, -2, 13]

► Based on the example 1.9, pp. 25–27, from [KG91], we multiply the triangular fuzzy numbers A = [2, 3, 4] and B = [3, 5, 6] and we will obtain the fuzzy number C = A(·)B = (6, 15, 24), which is not triangular (the membership function is not piecewise linear).

We can write the fuzzy number A as:

$$\mu_{\tilde{A}}(x) = \begin{cases} 0, & \text{if } x \leq 2 \\ x - 2, & \text{if } 2 \leq x \leq 3 \\ 4 - x, & \text{if } 3 \leq x \leq 4 \\ 0, & \text{if } x \geq 4 \end{cases}$$

• Making $\mu_A(x) = \alpha$ we obtain for a_1^{α} : $\alpha = a_1^{\alpha} - 2$ $\Rightarrow a_1^{\alpha} = \alpha + 2$

For a_2^{α} : $\alpha = 4 - a_2^{\alpha} \Rightarrow a_2^{\alpha} = 4 - \alpha$ Hence $A^{\alpha} = [a_1^{\alpha}, a_2^{\alpha}] = [\alpha + 2, 4 - \alpha]$

▶ We can write the fuzzy number *B* as:

$$\mu_{\tilde{B}}(x) = \begin{cases} 0, & \text{if } x \leq 3 \\ \frac{x}{2} - \frac{3}{2}, & \text{if } 3 \leq x \leq 5 \\ -x + 6, & \text{if } 5 \leq x \leq 6 \\ 0, & \text{if } x \geq 6 \end{cases}$$

• Making
$$\mu_B(x) = \alpha$$
 we obtain for b_1^{α} : $\alpha = \frac{b_1^{\alpha}}{2} - \frac{3}{2}$,
 $\Rightarrow b_1^{\alpha} = 2 \cdot \alpha + 3$

• For
$$b_2^{\alpha}$$
: $\alpha = -b_2^{\alpha} + 6 \Rightarrow b_2^{\alpha} = -\alpha + 6$

- Hence $B^{\alpha} = [b_1^{\alpha}, b_2^{\alpha}] = [2\alpha + 3, 6 \alpha]$
- ► Then: $A^{\alpha}(\cdot)B^{\alpha} = [\alpha + 2, 4 \alpha](\cdot)[2\alpha + 3, 6 \alpha]$

• Hence
$$C^{\alpha} = A^{\alpha}(\cdot)B^{\alpha} = [a_1^{\alpha} \cdot b_1^{\alpha}, a_2^{\alpha} \cdot b_2^{\alpha}]$$

- $C^{\alpha} = [c_1^{\alpha}, c_2^{\alpha}] = [(\alpha + 2) \cdot (2\alpha + 3), (-\alpha + 4) \cdot (-\alpha + 6)]$
- $[c_1^{\alpha}, c_2^{\alpha}] = [2\alpha^2 + 7\alpha + 6, \alpha^2 10\alpha + 24]$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

- In order to express α as a function of c₁^α, we denote c₁^α with x and we make 2α² + 7α + 6 = x, i.e., we solve the second degree equation in α: 2α² + 7α + 6 − x = 0
- We recall that the second degree equation in x, $ax^2 + bx + c = 0$ has the solutions $x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$, where $\Delta = b^2 - 4ac$

• In our case
$$\Delta = 7^2 - 4 \cdot 2 \cdot (6 - x) = 49 - 48 + 8x = 1 + 8x$$

• Hence
$$\alpha_{1,2} = \frac{-7 \pm \sqrt{1+8x}}{4}$$

Since we discuss about fuzzy membership functions (with values in the interval [0, 1], we consider only the solution situated in the real numbers interval [0, 1], which is α = ^{−7+√1+8x}/₄, for 6 ≤ x ≤ 15

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- In order to express α as a function of c^α₂, we denote c^α₂ with x and we make α² − 10α + 24 = x, i.e., we solve the second degree equation in α: α² − 10α + 24 − x = 0
- The solution is $\alpha_{1,2} = 5 \pm \sqrt{1+x}$
- We chose the solution situated in the interval [0, 1], which is $\alpha = 5 \sqrt{1+x}$, where $15 \le x \le 24$
- In conclusion, the result of the multiplication is the fuzzy number (fuzzy set) C:

$$\mu_{\tilde{C}}(x) = \begin{cases} 0, & \text{if } x \le 6\\ -\frac{7}{4} + \frac{\sqrt{1+8x}}{4}, & \text{if } 6 \le x \le 15\\ 5 - \sqrt{1+x}, & \text{if } 15 \le x \le 24\\ 0, & \text{if } x \ge 24 \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► We show example 1.11, pp. 32–33, from [KG91], where the triangular fuzzy number A = [18, 22, 33] is divided to the triangular fuzzy number B = [5, 6, 8], and we obtain the fuzzy number C = A(:)B = [18/8, 22/6, 33/5], which is not a triangular fuzzy number (its membership function is not piecewise linear)

The fuzzy number A can be written:

$$\mu_{\tilde{\mathcal{A}}}(x) = \begin{cases} 0, & \text{if } x \le 18\\ \frac{x}{4} - \frac{18}{4}, & \text{if } 18 \le x \le 22\\ -\frac{x}{11} + \frac{33}{11}, & \text{if } 22 \le x \le 33\\ 0, & \text{if } x \ge 33 \end{cases}$$

• Making $\mu_A(x) = \alpha$, we obtain for a_1^{α} : $\alpha = \frac{a_1^{\alpha}}{4} - \frac{18}{4}$, $\Rightarrow a_1^{\alpha} = 4\alpha + 18$

Similar, for a₂^α: α = -a₂^α/11 + 33/11 ⇒ a₂^α = -11α + 33
Hence A^α = [a₁^α, a₂^α] = [4α + 18, -11α + 33]

▶ The fuzzy number *B* can be written:

$$\mu_{\tilde{B}}(x) = \begin{cases} 0, & \text{if } x \leq 5\\ x - 5, & \text{if } 5 \leq x \leq 6\\ -\frac{x}{2} + \frac{8}{2}, & \text{if } 6 \leq x \leq 8\\ 0, & \text{if } x \geq 8 \end{cases}$$

- Making $\mu_B(x) = \alpha$, we obtain for b_1^{α} : $\alpha = b_1^{\alpha} 5$, $\Rightarrow b_1^{\alpha} = \alpha + 5$
- Similar, for b_2^{α} : $\alpha = -\frac{b_2^{\alpha}}{2} + \frac{8}{2}$, $\Rightarrow b_2^{\alpha} = -2\alpha + 8$
- Hence $B^{\alpha} = [b_1^{\alpha}, b_2^{\alpha}] = [\alpha + 5, -2\alpha + 8]$
- Then: $A^{\alpha}(:)B^{\alpha} = [4\alpha + 18, -11\alpha + 33](:)[\alpha + 5, -2\alpha + 8]$
- Hence $C^{\alpha} = A^{\alpha}(:)B^{\alpha} = [a_1^{\alpha}: b_2^{\alpha}, a_2^{\alpha}: b_1^{\alpha}]$
- $C^{\alpha} = [c_1^{\alpha}, c_2^{\alpha}] = [\frac{4\alpha + 18}{-2\alpha + 8}, \frac{-11\alpha + 33}{\alpha + 5}]$

▶ In order to find the membership function of the fuzzy number *C*, we denote $c_1^{\alpha} = x$ and make $\frac{4\alpha+18}{-2\alpha+8} = x$, then we express α as a function of *x*:

$$= \frac{4\alpha + 18}{-2\alpha + 8} = x \Rightarrow 4\alpha + 18 = -2x\alpha + 8x \Rightarrow 4\alpha + 2x\alpha = 8x - 18$$

$$\bullet \ \alpha(2x+4) = 8x - 18$$

$$\bullet \ \alpha = \frac{8x - 18}{2x + 4}$$

Similar, we denote $c_2^{\alpha} = x$ and it results $\frac{-11\alpha+33}{\alpha+5} = x$ $\Rightarrow -11\alpha + 33 = \alpha \cdot x + 5x$

$$\blacktriangleright -\alpha x - 11\alpha = 5x - 33$$

•
$$\alpha(x+11) = -5x+33$$

• $\alpha = \frac{-5x+33}{x+11}$

• Hence, the fuzzy number C = A(:)B can be written:

$$\mu_{\tilde{C}}(x) = \begin{cases} 0, & \text{if } x \le 9/4 \\ \frac{8x - 18}{2x + 4}, & \text{if } 9/4 \le x \le 11/3 \\ \frac{-5x + 33}{x + 11}, & \text{if } 11/3 \le x \le 33/5 \\ 0, & \text{if } x \ge 33/5 \end{cases}$$

- In order to obtain the left and right vertices of the triangular fuzzy number C we make α = 0 and we obtain: 8x − 18 = 0 ⇒ x = 18/8 = 9/4, respective −5x + 33 = 0 ⇒ x = 33/5
- In order to obtain the middle vertice of the triangular fuzzy number C we make α = 1, i.e. ^{8x-18}/_{2x+4} = 1 ⇒ 8x - 18 = 2x + 4, ⇒ 6x = 22 ⇒ x = 22/6 = 11/3

 Verification: ^{-5x+33}/_{x+11} = 1 ⇒ -5x + 33 = x + 11 ⇒ -6x =

 $-22 \Rightarrow x = 22/6 = 11/3$, correct !

Arnold Kaufman and Madan M Gupta. Introduction to fuzzy arithmetic.

Van Nostrand Reinhold Company New York, 1991.