
Fuzzy logic controllers

Digital fuzzy logic controllers

Doru Todinca

Department of Computers and Information Technology
UPT

Outline

Hardware implementation of fuzzy inference
The general scheme of the fuzzy control
Digital fuzzification
Digital fuzzy inference
Digital defuzzification

Fuzzy Logic Controllers
General aspects
Classic FLC
Simplified FLC
“Improved” FLC

Soures

This lecture contains text, figures, formulae, etc, taken (and
adapted) from the final year project of Ana-Maria Badulescu
[Bad99], which have been taken from [Pat96] and from [Chi92]
(for the simplified FLC)

In this lecture the fuzzy sets will be denoted only with capital
letters, without using the tilde symbol (˜) i.e. A,A′,B ,B ′, etc,
instead of Ã, Ã′, B̃ , B̃ ′

Outline

Hardware implementation of fuzzy inference
The general scheme of the fuzzy control
Digital fuzzification
Digital fuzzy inference
Digital defuzzification

Fuzzy Logic Controllers
General aspects
Classic FLC
Simplified FLC
“Improved” FLC

Outline

Hardware implementation of fuzzy inference
The general scheme of the fuzzy control
Digital fuzzification
Digital fuzzy inference
Digital defuzzification

Fuzzy Logic Controllers
General aspects
Classic FLC
Simplified FLC
“Improved” FLC

The general scheme of the fuzzy control

Fuzzifier

Knowledge
Base

Decision
Making Logic

Defuziffier

Controlled
System/Process

Process Output
and State

FuzzyFuzzy

Actual Control
Nonfuzzy

Figure 1: The general scheme of the fuzzy control

The general scheme of the fuzzy control

◮ The general scheme of the fuzzy control (fig 1) contains the
FLC and the controlled system/process

◮ The rectangle with dashed line represents the fuzzy logic
controller (FLC = Fuzzy Logic Controller)

◮ The outputs, and possible the states, of the controlled system,
are read by the controller (by the FLC in this case) and used
by the controller in order to determine the actual control

values

◮ Any control system works in this way, the only difference
being that the FLC is replaced by another type of controller
(e.g. PI, PID, etc)

◮ The outputs, inputs and states of the controlled system are
crisp values, while inside the FLC we use fuzzy sets

◮ ⇒ the need to transform crisp values into fuzzy sets
(operation called fuzzification), or to transform fuzzy sets into
crisp values (defuzzification)

The general scheme of the fuzzy control

◮ Hence, the interface of the FLC with external word is realized
by the Fuzzifier (for inputs), and by the Defuzzifier (for
outputs)

◮ Knowlege Base is the rule base containing the fuzzy rules used
to control a certain controlled process (hence, the knowledge
base depends on the application, i.e., on the controlled
process)

◮ Decision Making Logic implements the fuzzy inference and is
application independent

◮ The FLC can have other parameters like: maximum number
of inputs and outputs, maximum number of rules that can be
stored in the knowledge base, input-output response time, etc
(will be detailed later)

◮ In the following slides we will discuss the Fuzzifier, the
Defuzzifier, and the fuzzy inference (decision making logic)

Outline

Hardware implementation of fuzzy inference
The general scheme of the fuzzy control
Digital fuzzification
Digital fuzzy inference
Digital defuzzification

Fuzzy Logic Controllers
General aspects
Classic FLC
Simplified FLC
“Improved” FLC

Digital fuzzification: purpose

◮ The transformation of a crisp value of the input fact into a
fuzzy set (i.e., the fuzzification process) compensates for the
loss of accuracy of the measurement process (i.e, using
sensors) and of the digitization processes (A-D conversion). If
the internal domain of representation of fuzzy sets inside the
FLC is different from the domain of representation of the
digitized value, then a mapping process has to take place.

◮ If fuzzification is applied, an input fact will trigger more fuzzy
rules than in the case when the input fact remains crisp
(singleton), which means that the process of going from one
fuzzy rule to the other to be smoother (because the two rules
will be active in the same time, in different degree). Hence,
the controll process will be smooth.

◮ The drawback is that, if fuzzification is applied, the inference
process will need more computations than in the case of
singleton inputs.

The fuzzification process

A

Valoarea masurata

……
Univesul
discursului
continuu

G
ra

d
u

l
d

e
ap

ar
te

n
et

a
1

1/m’

1/n’
0

Universul
discursului
discret

Multimea
fuzzy A

Valoarea centrala

0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0M

at
ri

ce
a

b
in

ar
a

0

m

0 n

Mappare binara

delta

c32

Figure 2: The fuzzification process

The fuzzification process

◮ The measured value of an output (in this case A, see fig 2) or
of a state of the controlled process is analogue, having a
continuous universe of discourse

◮ This analogue value is discretized (by A-D conversion followed
by normalization), then it is fuzzified into a discrete universe
of discourse

◮ After fuzzification we obtain a fuzzy set A, which can be either
a single value (a singleton – no fuzzification performed in this
case), or a vector of arbitrary shape (triangle, Gaussian, etc)

◮ Usually we represent a fuzzified value (i.e., the fuzzy set A) as
an isosceles triangle with the base having the length of 2 ·∆
(if ∆ = 0, then the triangle becomes a singleton)

◮ The universe of discourse is discretized into n′ equal intervals,
while the membership function is discretized into m′ equal
intervals.

The fuzzification process

◮ The internal representation, inside the FLC, of the fuzzy set A
is made on a universe of discourse with n elements and a
membership function represented on m bits, i.e., with integer
values in the interval [0, 2m − 1]

◮ Which means that the internal representation of the fuzzy set
A is a Boolean matrix that has the size m ∗ n

◮ We prefer to represent the membership functions as integer
numbers on m bits, instead of real numbers in the interval
[0, 1]

◮ If n 6= n′, a nonlinear mapping is needed between the two
universes of discourse

◮ The universe of discourse of the real discretized input values
can have negative values, but for the internal representation
of fuzzy sets inside the FLC, we prefer to use positive numbers
between 0 and n− 1 (a linear mapping has to be performed)

◮ In general we prefer that m′ = 2m

Outline

Hardware implementation of fuzzy inference
The general scheme of the fuzzy control
Digital fuzzification
Digital fuzzy inference
Digital defuzzification

Fuzzy Logic Controllers
General aspects
Classic FLC
Simplified FLC
“Improved” FLC

Digital fuzzy inference: fuzzy rules

◮ We describe the set of N fuzzy rules from the rule base of the
FLC

◮ Each rule can have in general K inputs and L outputs, but in
most cases we prefer FLCs with a single output

◮ A1, A2, . . .AK denote the input K linguistic variables (e.g.
speed, distance, or control error e, the derivative of the error
de, the second derivative of the error d2e, etc), while
B1, . . . ,BL denote the L output linguistic variables (e.g.
acceleration, the control signal u, etc)

◮ A1
i , . . . ,A

K
i represents the linguistic terms of the input

linguistic variables 1, . . .K of the rule i (e.g. for the variable
speed, the terms can be very small, small, etc; for the
linguistic variable error, the terms can be negative large,
approx zero, positive large, etc)

◮ Similar, B1
i , . . . ,B

L
i represent the terms of the output

linguistic variables 1, . . . , L of rule i
◮ O graphic representation of fuzzy inference for the case when

there are 2 inputs and one output, and the input fact is crisp

Digital fuzzy inference: fuzzy rules

R1: IF A1 IS A1
1 AND A2 IS A2

1 AND . . . AND AK IS AK
1 THEN

B1 IS B1
1 IS B2 IS B2

1 AND . . . AND BL IS BL
1 ,

ALSO
R2: IF A2 IS A1

2 AND A2 IS A2
2 AND . . . AND AK IS AK

2 THEN
B1 IS B1

2 AND B2 IS B2
2 AND . . . AND BL IS BL

2 ,

ALSO
...
Ri : IF A1 IS A1

i AND A2 IS A2
i AND . . . AND AK IS AK

i THEN
B1 IS B1

i AND B2 IS B2
i AND . . . AND BL IS BL

i ,

ALSO
...
RN : IF A1 IS A1

N AND A2 IS A2
N AND . . . AND AK IS AK

N THEN
B1 IS B1

N AND B2 IS B2
N AND . . . AND BL IS BL

N .

Example of fuzzy inference when the input fact is not

fuzzified

mB1

mB

a2

b

y

mB2

b

A
2

2

A
2

1 B1

B2M
I
N

m

a1

M
A
X

M
I
N

a2

a1

A2A1

A
1

1

A
1

2

m

m

m

Figure 3: Example of fuzzy inference with 2 inputs and one output when
the input fact is not fuzzified (i.e, it is crisp)

Example of fuzzy inference when the input fact is fuzzified

m(x)

m(x)

m(y)

m(y)

x

x

y

y

m(y)

y

ai

aj

A’

Aj A’

Ai Bi

Bj

Bi’

Bj’

Rulej

Rulei

Figure 4: Example of fuzzy inference with one input and one output when
the input fact is fuzzified

Outline

Hardware implementation of fuzzy inference
The general scheme of the fuzzy control
Digital fuzzification
Digital fuzzy inference
Digital defuzzification

Fuzzy Logic Controllers
General aspects
Classic FLC
Simplified FLC
“Improved” FLC

Digital defuzzification

◮ The output of the fuzzy inference process is a fuzzy set,
usually non-normal, obtained by the union of the outputs of
the active fuzzy rules (e.g. fig 3, 4)

◮ In some cases it is possible to use directly this fuzzy set: e.g.
in expert systems we can try to “identify” this set, i.e., to give
it an interpretation as a fuzzy set

◮ In control engineering problems (and in most cases, in
general) we want to apply a crisp control signal to the
controlled process, not a fuzzy set

◮ In order to obtain this crisp value from the output fuzzy set,
the defuzzification operation is needed.

◮ By defuzzification we understand the transformation of a
fuzzy set into a crisp value

Digital defuzzification

◮ The most used defuzzification method is Centre OF Area
(COA), named also Centre of Gravity (COG), illustrated in
figure 5

◮ In fig 5, on the abscissa it is represented the universe of
discourse, and on the ordinate, the degree of membership

◮ The output crisp value will be the abscissa of the center of
gravity of the figure (i.e. fuzzy set) resulted after the fuzzy
inference

◮ Formula for COG is:
∫
µ(y)·ydy∫
µ(y)dy

or, for the discrete case,
∑n

j=1 µ(yj)·yj∑n
j=1 µ(yj)

◮ The defuzzification usually involves a division operation, hence
it is very slow and resource consuming in case of hardware
implementation of the FLC

◮ There exist other defuzzification methods: Smallest of
Maxima (SOM), Mean of Maxima (MOM), etc

Digital defuzzification

1

0

0

b
i=1

i=2

i=3

COA

Universul
discursului

G
ra

d
u
l

d
e

ap
ar

te
n
en

ta

Figure 5: Digital defuzzification

Outline

Hardware implementation of fuzzy inference
The general scheme of the fuzzy control
Digital fuzzification
Digital fuzzy inference
Digital defuzzification

Fuzzy Logic Controllers
General aspects
Classic FLC
Simplified FLC
“Improved” FLC

Outline

Hardware implementation of fuzzy inference
The general scheme of the fuzzy control
Digital fuzzification
Digital fuzzy inference
Digital defuzzification

Fuzzy Logic Controllers
General aspects
Classic FLC
Simplified FLC
“Improved” FLC

Digital FLC characteristics

◮ Performance measurements provided by the FLC
manufacturers:

1. number of fuzzy inferences per second, where by fuzzy
inference is understand sometimes an operation defined by a
single rule, or, an operation defined by a part of a rule

2. number of elementary fuzzy operations (MIN or MAX) per
second

◮ These parameters cannot provide a reliable measurement of
the real speed of the FLC.

◮ Therefore, Patyra (in [Pat96]) suggested to characterize the
FLC by the input-to-output delay, denoted θIN−OUT :
This is defined as the total delay time from the moment when
data (the fact) are provided at the inputs of the FLC, till the
moment when the crisp action is generated at the output of
the FLC.

Digital FLC characteristics

The most important parameters of a FLC are:

◮ number of input variables (i.e., of inputs)(K)

◮ number of output variables (L) (outputs)

◮ number of linguistic rules in the knowledge base (N)

◮ number of membership functions in the input universe of
discourse (i.e., the number of terms of an input linguistic
variable) (MBIN)

◮ number of membership functions in the output universe of
discourse (i.e., the number of terms of an output linguistic
variable) (MBOUT)

◮ number of binary vectors that characterize the membership
functions (n)

◮ number of bits in a single binary vector (m)(the number of
bits used to represent the membership functions)

◮ input-to-output delay time (θIN−OUT)

Outline

Hardware implementation of fuzzy inference
The general scheme of the fuzzy control
Digital fuzzification
Digital fuzzy inference
Digital defuzzification

Fuzzy Logic Controllers
General aspects
Classic FLC
Simplified FLC
“Improved” FLC

Fuzzy Logic Controllers
Fuzzy inference means the obtaining of a new fact, B ′, from a fact
A′ and a rule A → B , according to the formula:

B ′ = A′ • RA→B (1)

When the circuit has two inputs and one output, the relation (1)
becomes:
R1: IF A1

1 AND IF A2
1 THEN B1, ALSO

R2: IF A1
2 AND IF A2

2 THEN B2, ALSO
...
Ri : IF A1

i AND IF A2
i THEN Bi , ALSO

...
RN : IF A1

N AND IF A2
N THEN BN .

(2)

where R1 .. RN are fuzzy rules, A1 si A2 are input variables, and B

is the output.

Fuzzy Logic Controllers

In these rules, by premise (or antecedent) we refer to the input
variables, while the conclusion concerns the output fuzzy sets.
In the case of DISO (Double Input, Single Output) FLC, the
premise is composed, the two parts of the premise (the
sub-premises) being connected by the logic AND operator.
Hence, according to the definition of fuzzy implication, we obtain:

B ′ = (A1,A2) • R (3)

where R = (A1,A2) → B .
Rules Ri are connected with the ALSO operator, which is
interpreted as logic OR. Hence, the final result is obtained by the
union of the rules Ri :

R =

N⋃

i=1

Ri (4)

Fuzzy Logic Controllers

The fact A′ is A′ = (A1,A2), so the conclusion B1 is obtained
applying the compositional rule of inference:

B1 = (A1,A2) • R = (A1,A2) •

N⋃

i=1

Ri =

N⋃

i=1

(A1,A2) • Ri (5)

The membership function of the set B1 can be computed with the
MAX-MIN operator. For the rule Ri we obtain:

B1i = (A1,A2) • Ri (6)

Fuzzy Logic Controllers

The corresponding membership function is defined as follows:

µB1i (b) = MAXMIN(µA1(a1)× µA2(a2), µR(a1, a2, b)) =
a1 ∈ A1, a2 ∈ A2

MINMAX{MIN[MIN(µA1(a1), µA1
1
(a1)),MIN(µA2(a2), µA2

i
(a2))],

(7)
µBi

(b)}, a1 ∈ A1, a2 ∈ A2

= MIN(Ωi , µBi
(b))b ∈ B

where, in this case, Ωi is defined: Ωi =

MIN{MAXMIN(µA1(a1), µA1
1
(a1)),MAXMIN(µA2(a2), µA2

1
(a2))}

(8)
a1 ∈ A1, a2 ∈ A2

Fuzzy Logic Controllers

So, the maximum between B11, B12, . . . , B1N determines the
final action B1, computed as the union:

B1 =
N⋃

i=1

B1i = MAX (B11,B12, . . . ,B1N) (9)

Fuzzy Logic Controllers: classic implementation

FUZZIFIER

Input 2

MIN1

MIN2

MINi

MINN

A2

A
2

1
A

2

2 A
2

i A
2

N
· · ·· · ·

·

·

·

·

·

·

·

·

·

·

·

·

n*m

n*m

MAX

MAX

MAX

MAX

n*m

mn*m

n*m

·

·

·

·

·

·

n*m

m

m

m

FUZZIFIER

Input 1

MIN1

MIN2

MINi

MINN

A1

A
1

1
A

1

2 A
1

i A
1

N
· · ·· · ·

·

·

·

·

·

·

·

·

·

·

·

·

n*m

n*m

MAX

MAX

MAX

MAX

n*m

mn*m

n*m

·

·

·

·

·

·

n*m

m

m

m

MIN1

MIN2

MINi

MINN

m

m

m

·

·

·

·

·

·

m

· · · · · ·

·

·

·

·

·

·

BN Bi B2 B1

MIN1

MIN2

MINi

MINN

MAX

n*m

n*m

n*m

n*m

n*m
B1

Output

DEFUZZIFIER

Figure 6: FLC DISO, classic implementation

Classic DISO FLC: the premises

◮ DISO - Double Input, Single Output

◮ The diagram from fig 6 is a block diagram, not a hardware
diagram, because some blocks need a more complex hardware
implementation: e.g., the first level of MIN blocks perform the
minimum between n pairs of operands (m bits membership
functions)

◮ Each of the two input facts (Input 1 and Input 2) are
transformed into fuzzy sets by the two fuzzifiers

◮ These fuzzy sets are stored in the memories A1, respectively
A2, both being n ∗m bits vectors

◮ The linguistic terms from premises are stored into the N

(where N is the number of fuzzy rules) memories (of n ∗m
bits) denoted A1

1, . . . ,A
1
N , for the first input, and respectively

A2
1, . . .A

2
N for the second input

◮ Actually we need only MBIN memories for each input, but in
this case we have to establish how to associate the input
terms with the rules

Classic DISO FLC: the premises

◮ First level of MIN circuits performs the minimum between the
membership function of a term and the membership function
of the fuzzified input fact; the inputs and the output are n ∗m
bits vectors

◮ According to the formula, these circuits compute
MIN(µA1(a1), µA1

1
(a1))

◮ First level of MAX circuits compute Ωi for each sub-premise
of each rule

◮ Actually they determine the maximum of an array with n

elements;

◮ The input is an n ∗m bits vector, the output is a scalar (on m

bits)

Classic DISO FLC: the premises

◮ For a hardware implementation we need a register at the
output of each MAX circuit, where to store the partial result,
and we compute the maximum between the current input of
the MAX circuit and the partial result from the register

◮ This operation needs to be performed n times (i.e., for each
element of the array)

◮ Second level of MIN circuits implements the AND operation
between the two subpremises: the inputs and the output are
scalars (on m bits)

Classic DISO FLC: the conclusions

◮ The third level of MIN circuits from the FLC belongs to the
part of the FLC used for processing the conclusions

◮ These circuits perform the minimum between the membership
function of the term from the conclusion of the rule (Bi for
rule i), which is an n ∗m bits vector, and the degree of
activation Ωi of rule i (which is an m bits scalar)

◮ The outputs of the circuits are n ∗m bits vectors, namely B ′

i ,
the “truncated” fuzzy sets

◮ The same like for premises, instead of N memories of n ∗m
bits, one memory for each rule, we can use only MBOUT

memories, one for each linguistic term from conclusion

◮ In this case we have to perform the binding between the index
i of rule i and the corresponding linguistic term

Classic DISO FLC: the conclusions

◮ Last level of MAX circuits implements the union operation
B1 =

⋃N
i=1B1i = MAX (B11,B12, . . . ,B1N) corresponding

to the operator ALSO

◮ The inputs and the output are n ∗m bits vectors

◮ There are several possible hardware implementations of this
circuit, depending on the degree of parallelism involved

◮ The output of this MAX circuit is stored into the memory B1,
of n ∗m bits

◮ From there, it will be defuzzified and sent to the output of the
FLC

Outline

Hardware implementation of fuzzy inference
The general scheme of the fuzzy control
Digital fuzzification
Digital fuzzy inference
Digital defuzzification

Fuzzy Logic Controllers
General aspects
Classic FLC
Simplified FLC
“Improved” FLC

Simplified FLC

◮ The inputs of this FLC are not fuzzified, they remain
singletons.

◮ This will simplify the computations from premises,

◮ in the sense that the value Ωi is obtained by the intersection
between the fuzzy set A1

i and the fact A1 represented by a
singleton.

◮ If the premises is composed, an AND is performed between
these values.

◮ Conclusion of the rule is obtained as a minimum between Ωi

and the membership function of the set Bi (fig 3)

Conditions for simplifying the architecture of the FLC

◮ In order to obtain the intersection between the input fact and
the fuzzy set representing the term of an input linguistic
variable, we will use the value of the fact, normalized to the
universe of discourse, as an address in the memory that
contains the linguistic variable corresponding to that input.

◮ The terms of a linguistic variable, represented as fuzzy sets,
intersect each other, hence an input fact can intersect more
than one linguistic term (and consequently, it can activate
more than one rule)

◮ In order to increase the speed of the circuit, we will process
the rules in parallel, and we have to determine the parameter
MNSAR : maximum number of simultaneous active rules
[Chi92]

Conditions for simplifying the architecture of the FLC

◮ We can see that MNSAR = MOFK , where MOF (maximum
overlap factor) is the maximum number of linguistic terms
that can overlap

◮ MOF ≥ 2 and it is convenient to chose MOF = 2

◮ This choice imposes a limitation to the user regarding the
choice of the terms of the input linguistic variables, but this
limitation is not annoying (it is a natural that no more than
two terms of a linguistic variable overlap)

◮ The terms will be separated into two disjunctive sets, odd
terms and even terms, such that each of the two sets can be
stored into a memory of n m bits locations (see fig 7)

Separation of the terms of a linguistic variable in even and

odd terms

m()x

x

m()x

x

m()x

x

nl

nl nm

nm

ns

ns

zr

zr

ps

ps

pm

pm

pl

pl

Figure 7: Separation of the terms of a linguistic variable in even and odd
terms

Hardware diagram of the simplified FLC with 3 inputs

◮ In this case (i.e., MOF = 2) we will represent the MBIN terms
of each input linguistic variable using two arrays of n
locations, each location containing the value of the
membership function (the degree, on m bits) and the code of
that linguistic term (the symbol).

◮ One array contain the odd terms, the other array contains the
even terms

◮ Alongside the MBIN terms, we need to add a symbol for ’no
term’, for the case when the input fact does not intersect any
term in one of the two memories.

Hardware diagram of the simplified FLC with 3 inputs

◮ The circuit from figure 8 is a schema hardware diagram, not
only a block diagram, like in figure 6 (classic DISO FLC)

◮ This circuit is MISO, with K = 3, hence we obtain
MNSAR = 8,

◮ A triplet of inputs (representing the input fact) will determine
the memories containing the input variable to show at their
outputs three pairs (symbol, degree) = (Sij , Dij),
i , j ∈ {1, 2, 3}.

◮ The symbols will be used as addresses for the rule memory (or
memories) RM111,RM112, . . . ,RM222; the content retrieved
from the memory will be the term of the linguistic variable
from the conclusion of the rule that has in premises these
symbols.

◮ The symbol obtained from the memory rule will be used as an
address in the memory that stores the output linguistic
variable. The symbol is coded on n ∗m bits.

Hardware diagram of the simplified FLC with 3 inputs

◮ The degress obtained from the input memories are processed
in parallel with the processing of symbols:

◮ A MIN operation is performed between the three degrees

◮ This MIN corresponds to the logic AND between the
sub-premises of a rule.

◮ The result of the MIN is the degree in which the premise of a
certain rule is true (Ω in formulas 8).

◮ Performing MIN between this Ω and the membership function
of the term of the linguistic output variable, we obtain the set
B ′ corresponding to the activated rule.

◮ A union is performed between the consequences of the
activated rules by the circuit MAX with 8 inputs, whose
output enters into the defuzzifier.

◮ Registers are optional and are used in order to make a pipeline
between the inference and defuzzification operations.

RM111 RM112 RM121 RM122 RM211 RM212
1

RM221 RM222

MIN MIN MIN MIN MIN MIN MIN MIN

MIN MIN MIN MIN MIN MIN MIN MIN

 Counter
 modulo
 64

MIN MIN MIN MIN MIN MIN MINMIN
REG REGREGREGREGREGREGREG

 MAX MAX MAX MAX

 MAX MAX

 MAX
DEFUZIFICATOR

Input 1 Input 2 Input 3

Output

 0
 1
 *
 *
63

 0
 1
 *
 *
63

 0
 1
 *
 *
63

 0
 :
63
 0
 :
63
 :
 0
 :
63

1 í
2 í
 :
7 í

 S11 D11 S12 D12 S21 D21 S22 D22 S31 D31 S32 D32

C111

S11 S21 S31

D11 D21

aux1

md1nr

cs1

do1

r1
do2

aux_1 aux_2

aux_5
mxr

Outline

Hardware implementation of fuzzy inference
The general scheme of the fuzzy control
Digital fuzzification
Digital fuzzy inference
Digital defuzzification

Fuzzy Logic Controllers
General aspects
Classic FLC
Simplified FLC
“Improved” FLC

“Improved” FLC

It is based on the commutativity between MAX-MIN and UNION.
First, we build the individual fuzzy relations.
Fuzzy relation Ri (fuzzy implication for the first linguistic variable):

R1
i = A1

i × Bi (10)

For the second variable:

R2
i = A2

i × Bi (11)

R1 and R2 represent fuzzy partial relations, or sub-relations
The overall relation R = R1 ∪ R2.

“Improved” FLC

For the first input variable A1 and the output B we obtain:

R1 = R1
1 ∪ R1

2∪, . . . ,∪R
1
N (12)

For the combination between the second input variable A2 and the
output B :

R2 = R2
1 ∪ R2

2∪, . . . ,∪R
2
N (13)

Replacing the UNION operator with MAX, we obtain:

R1(a1, b) = MAX{R1
1 (a1, b),R

1
2 (a1, b), . . . ,R

1
N(a1, b)} (14)

R2(a1, b) = MAX{R2
1 (a1, b),R

2
2 (a1, b), . . . ,R

2
N(a1, b)} (15)

“Improved” FLC

Partial fuzzy relations are used in order to obtain the result of the
fuzzy inference.
Output B1 related to the inputs A1 and A2, can be obtained using
the MIN-superposition operator of the two partial relation:

B1 = MIN{[A1 • R1(a1, b)], [A2 • R
2(a2, b)]} (16)

b ∈ B

B1 = MIN{MAXMIN[A1,R1(a1, b)],MAXMIN[A2,R2(a2, b)]}
(17)

b ∈ B

where R1(a1, b) and R2(a2, b) are given by the equations (14),
respectively (15).

“Improved” FLC

FUZZIFIERInput 1 A1

n*m

A
1

1

A
1

2

n*m

B1

Output

DEFUZZIFIER

B
1

1

B
1

2

MIN1

MIN2n*m

n*m

n*m

n *m
2

MAX

n *m
2

MAX
n*mA

1

N

B
1

N

MINNn*m

n *m
2

·
·
·

·
·
·

·
·
·

n*m

Input 2 A2

n*m

A
2

1

A
2

2

B
2

1

B
2

2

MIN1

MIN2
n*m

n*m

n*m

n *m
2

MAX

n *m
2

MAX

n*mA
2

N

B
2

N

MINN
n*m

n *m
2

·
·
·

·
·
·

·
·
·

n*m

Sub-rule Learning Block

Sub-rule Learning Block

MIN

MIN

n*m

n *m
2

n*m

n *m
2

MAX

MAX

n *m
2

n *m
2

n*m

n*m

MIN

n*m

FUZZIFIER

Figure 9: Improved FLC

“Improved” FLC: advantages and drawbacks

◮ The part represented in fig 9 inside the rectangles can be
processed off-line (before facts appear at the inputs)

◮ This will decrease the input-to-output delay time (θIN−OUT)
of the improved FLC, compared to classic FLC

◮ But, the main problem is that the fuzzy rules with mre than
one sub-premise are not given usually in the form “IF premise1
THEN conclusion” and “IF premise2 THEN conclusion”, but
“IF premise1 AND premise2 THEN conclusion”

◮ It means that it is difficult to formulate the rules with the
input variables completely separated

◮ The attempts to start from the rules with several premises
and to separate the premises can give bad results !!

◮ In the simulations that I performed with this type of FLC, it
succeeded to control the controlled process only for rules with
only one input !!

◮ There are however situations, but not very often, when it is
possible to formulate the rules with the input variables
separated

Ana-Maria Badulescu.
Studiul performantelor circuitelor fuzzy utilizand limbajul
VHDL, (Performance study of fuzzy circuits using VHDL),
Diploma project, supervisor Doru Todinca, University
Politehnica Timisoara, Dep. of Computers, Facultaty of
Automation and Computers, 1999.

Tzi-cker Chiueh.
Optimization of fuzzy logic inference architecture.
Computer, 25(5):67–71, May 1992.

Marek J. Patyra.
Design considerations of fuzzy logic controllers.
In Marek J. Patyra and D.M. Mlynek, editors, Fuzzy Logic:

Implementations and Applications, pages 143–175. John Wiley
& Sons Ltd. and B.G. Teubner, 1996.

	Hardware implementation of fuzzy inference
	The general scheme of the fuzzy control
	Digital fuzzification
	Digital fuzzy inference
	Digital defuzzification

	Fuzzy Logic Controllers
	General aspects
	Classic FLC
	Simplified FLC
	``Improved'' FLC

