
Digital Telecommunications, Signal Acquisition and Processing

Projects and Practical Applications

Valentin Stangaciu Cristina Stangaciu

Colecţia "PROGRAMARE"
__

DIGITAL TELECOMMUNICATIONS,
SIGNAL ACQUISITION AND PROCESSING

PROJECT AND PRACTICAL APPLICATIONS

Cartea de faţă este scrisă sub forma unui ghid pentru cei care vor să

dobândească cunoştinţe şi aptitudini aplicative în domeniile: Telecomunicaţii
digitale, Achiziţia şi prelucrarea semnalelor digitale şi Sisteme încorporate. Ca
premise în atingerea unei eficienţe cât mai mari în rezolvarea aplicaţiilor şi în
însuşirea de cunoştinţe, se presupune că cititorul are o anumită experienţă în
programarea calculatoarelor, îndeosebi în folosirea limbajului de programare C.

Referent ştiinţific: Prof.dr.habil.ing. Mihai V. MICEA

Lucrarea prezintă o serie de teme de actualitate din domeniul

calculatoarelor şi tehnologiei informaţiei, într-o formă ce favorizează învăţarea
prin experiment, îmbinând fundamentele teoretice necesare şi suficiente temei
cu soluţiile clasice de implementare precum şi cu uneltele disponibile
implementării acestora.

Referent ştiinţific: Conf.dr.ing. Marius MARCU

Descrierea CIP a Bibliotecii Naţionale a României
STÂNGACIU, VALENTIN
 Digital telecommunications, signal acquisition and
processing : project and practical applications / asist. dr. ing.
Valentin Stângaciu, asist. dr .ing. Cristina Sorina Stângaciu. –
Timişoara : Editura Politehnica, 2016
 Conţine bibliografie
 ISBN 978-606-35-0080-0

I. Stângaciu, Cristina Sorina

004.383.3:621.39

Asist.dr.ing. Valentin STÂNGACIU

Asist.dr.ing. Cristina Sorina STÂNGACIU

DIGITAL TELECOMMUNICATIONS,
SIGNAL ACQUISITION AND PROCESSING

 Colecţia "PROGRAMARE"

EDITURA POLITEHNICA
TIMIŞOARA - 2016

Copyright © Editura Politehnica, 2016

Nicio parte din această lucrare nu poate fi reprodusă, stocată sau transmisă prin
indiferent ce formă, fără acordul prealabil scris al Editurii Politehnica.

EDITURA POLITEHNICA
Bd. Republicii nr. 9
300159 Timişoara, România

Tel./Fax. 0256/403.823
E-mail: editura@upt.ro

Consilier editorial: Prof. dr. ing. Sabin IONEL
Redactor: Claudia MIHALI

Bun de imprimat: 11.10.2016
Coli de tipar: 16
C.Z.U. 004.383.3:621.39
ISBN 978-606-35-0080-0

Tiparul executat sub comanda nr. 49
la Tipografia Universităţii Politehnica Timişoara

Digital Telecommunication 5

 Preface

This book was written as a practical guide for the students from the technical field of
Computer Engineering and Information Technology, who want to be introduced in the
fields of Digital Telecommunication, Digital Signal Acquisition and processing, and
Embedded Systems Design and Development.

In this book, the readers will find practical aspects regarding GSM/GPRS protocols of
telecommunication, digital signal acquisition, audio signal processing and embedded
systems design and development. The readers will also be invited to gain practical skills
in the fields mentioned above, by developing a series of applications like: a digital
oscilloscope, a basic sound processing system or a digital alarm clock. All this
applications being divided into relatively small practical assignments which have a
gradual complexity level.

The development of the material which represents the core of this book and of the
proposed assignments is the result of more than 4 years of work commitment of a team of
researchers and teachers, members at the DSPLabs, from which the authors would like to
thank eng. Dan Chiciudean and professor Mihai Micea for all the guidance and support. I
would also like to thank dr. Ciprian Chirilă, eng. Cristian Cucuieț and professor Marius
Marcu.

 The authors

 6 Introduction

Digital Telecommunication 7

Table of contents

1 Digital Telecommunication .. 9

1.1 Introduction .. 9
1.1.1 General specifications .. 9
1.1.2 The DSPLABS_DT_STK_V1 learning kit ... 9
1.1.3 General specifications about the GSM/GPRS Modem 13
1.1.4 Provided materials ... 17
1.1.5 Laboratory applications planning .. 17

1.2 Laboratory work – GSM AT command language .. 19
1.3 Laboratory work – GSM AT command language implementation in C 29
1.4 Laboratory work – Introduction to The Keil uVision environment 34
1.5 Laboratory work – Integration of the AT command parser in Keil 38
1.6 Laboratory work – Implementation of modem status commands 43
1.7 Laboratory work – SMS management .. 45
1.8 Laboratory work – Management interface using LCD and touchscreen 50
1.9 Laboratory work – GPRS, TCPIP stack and socket management 52
1.10 Driver manual .. 60

1.10.1 Introduction .. 60
1.10.2 SRAM Memory Driver .. 61
1.10.3 LCD Driver .. 61
1.10.4 Touchscreen driver .. 62
1.10.5 LED Driver .. 63
1.10.6 UART Driver ... 63
1.10.7 Driver utilities .. 67

1.11 Frequently used Modem AT commands ... 70
1.11.1 General specifications .. 70
1.11.2 Simple AT Command .. 70
1.11.3 AT+CREG ... 71
1.11.4 AT+CSQ .. 72
1.11.5 AT+COPS .. 73
1.11.6 AT+COPN ... 74
1.11.7 AT+GSN .. 75
1.11.8 AT+GMI .. 75
1.11.9 AT+GMR ... 76
1.11.10 AT+CMGF ... 76
1.11.11 AT+CMGL .. 77
1.11.12 AT+CMGS ... 79
1.11.13 AT+CMGD .. 80
1.11.14 AT+CIPMUX .. 80
1.11.15 AT+CIPMODE .. 81
1.11.16 AT+CGREG .. 82
1.11.17 AT+CGATT ... 84
1.11.18 AT+CSTT .. 85
1.11.19 AT+CIICR ... 86
1.11.20 AT+CIFSR ... 86
1.11.21 AT+CIPSTART ... 87
1.11.22 AT+CIPSEND ... 88
1.11.23 AT+CIPCLOSE ... 88

2 Digital Signal Acquisition and Conditioning 89

 8 Introduction

2.1 Introduction ... 89
2.1.1 General specifications ... 89
2.1.2 Provided materials ... 89
2.1.3 Laboratory applications planning .. 95

2.2 Laboratory work 1 – First project: LED blink .. 96
2.3 Laboratory work 2 – Serial communication - transmission 109
2.4 Laboratory work 3 – Analog to digital conversion. Digital voltmeter 120
2.5 Laboratory work 4 – Minimal 2 channel oscilloscope ... 126
2.6 Laboratory work 5 – Oscilloscope trigger .. 131
2.7 Laboratory work 6 – One channel frequency calculation 141
2.8 Laboratory work 7 – Serial communication - reception 145
2.9 Laboratory work 8 – Oscilloscope control ... 150

3 Digital Signal Processing .. 156

3.1 Introduction ... 156
3.2 Laboratory work – The GPIO System of the ADSP Blackfin BF537 processor . 156
3.3 Laboratory work – The clock system and the Timer module of Blackfin BF537 160
3.4 Laboratory work – Audio signals ... 167
3.5 Laboratory work – Echo effect ... 171

4 Embedded Systems Design and Development 173

4.1 Introduction ... 173
4.1.1 Provided materials ... 173
4.1.2 Laboratory applications planning .. 180

4.2 Laboratory work 1 - First project: LED blink .. 182
4.3 Laboratory work 2 - Push buttons ... 193
4.4 Laboratory work 3 - Timer, compare match, interrupts 199
4.5 Laboratory work 4 - Control 2 digit 7 segment display 209
4.6 Laboratory work 5 - Read 4x4 keyboard 16 keys .. 215
4.7 Laboratory work 6 - UART interface ... 221
4.8 Laboratory work 7 - Working with alphanumerical LCD display 236
4.9 Laboratory work 8 - Analog to Digital Converter .. 241
4.10 Laboratory project – Digital alarm clock .. 249

Bibliography ... 251

Digital Telecommunication 9

1 Digital Telecommunication

1.1 Introduction

1.1.1 General specifications

 The Digital Telecommunication laboratory aims at introducing the attending students
into the domain of GSM/GPRS communications. The main aspect of the laboratory is to
provide the basics for designing and implementing applications that use GSM/GPRS
communications. The finality of the laboratory is represented by a GSM/GPRS terminal
that is able to display status information about the GSM modem as well as perform simple
functions like reading and sending SMS messages or initiating voice calls. The user
interface is represented by a touchscreen with an interface designed by the attending
students.
 In order to attend to this laboratory the students must have the following mandatory
prerequisites:

- Strong C programming skills [1]
- Basic knowledge of embedded systems and embedded programming and

debugging
- Basic knowledge of finite state machine theory

 Although it is not mandatory, it is recommended for student to have basic knowledge
about communication protocols like RS233 as well as basic knowledge about computer
graphics.

1.1.2 The DSPLABS_DT_STK_V1 learning kit

 The main hardware component of the laboratory is represented by the
DSPLABS_DT_STK_V1 board. This board is design and developed internally by
DSPLabs and is intended to be a learning kit for disciplines that involve any kinds of
digital communications. During the laboratory applications intended for this discipline the
attention will be focused on the GSM modem.

 10 Introduction

Fig. 1-1 DSPLABS_DT_STK_V1

 The learning kit that is used for the laboratory applications is divided into 3 separate
but interconnected boards as shown in Fig. 1-1. One of the boards is represented by the
Olimex MOD-LCD4.3 board [2], displayed in Fig. 1-2, which is used as a main processing
and control unit. This board contains an ARM Cortex M3 NXP LPC1788 microcontroller
[3], a TFT LCD with a resolution of 480x272 24bit color pixels, backlight and touchscreen
as well as 32 MB of SDRAM external for the microcontroller.

Fig. 1-2 Olimex MOD-LCD4.3 board [2]

 The debugging and microcontroller programming is handled by the dedicated JTAG
module CooCox CoLinkEx [4] which is directly integrated into the development
environment.

Digital Telecommunication 11

 Fig. 1-3 CooCox CoLinkEx Debugger Module [4]

 The main component of the learning KIT is the DSPLABS_DT_STK_V1_COMM
board which is connected to the Olimex MOD-LCD4.3 board and the CooCox CoLinkEx
Debugger via a passive connection board. The DSPLABS_DT_STK_V1_COMM board
contains various communication modules in order to be used for many disciplines
involving digital communication. The board was designed to offer various means of
communication using interfaces like XBee [5, 6], for wireless sensor networks, Bluetooth,
Ethernet with TCPIP [7], GSM/GPRS [8] and many more as shown in Fig. 1-4.

 Fig. 1-4 DSPLABS_DT_STK_V1_COMM board component

 12 Introduction

 One very important aspect of this board is that it was designed especially for
laboratory lessons thus it is highly modular. Practically all of the interfaces can be
connected in almost anyway using some provided connection cables. In Fig. 1-4 all the
related components are highlighted in different colors which offer a base analysis of the
board components.
 The purple highlight is related to the GSM/GPRS interface which has as its main
components: the SimCom SIM908 GSM/GPRS/GSM modem, the embedded GSM
antenna, the SIM card slot, the GSM modem power on button and the GSM modem’s
UART interface 2x5 pin connector. It is very important to mention that the UART
interface of the GSM modem is directed to the purple highlighted 2x5 pin connector and
not further after this connector. Practically the UART signals from this GSM modem stop
in the purple highlighted 2x5 pin connector. Any connection to any other interface can
only be made via connection cables. This aspect is applicable to all the other
communication interfaces. For example the XBee related components, highlighted by the
yellow border, are the XBee module and its UART interface which is accessible though
the associated 2x5 pin connector also highlighted connector. In this case also the XBee
UART signals are taken only to the yellow highlighted 2x5 pin connector and not any
further. Cables are required for any connections.
 Similar procedure applies to the communication interfaces of the LPC1788
microcontroller of the Olimex MOD-LCD4.3 board. The NXP LPC1788 has 5 UART
interfaces [9] and 3 of them are exported on the DSPLABS_DT_STK_V1_COMM and
translated to 3 2x5 pin connectors in the following convention: the UART_3 of the
LPC1788 is exported to green highlighted connector; UART_0 is exported to the red
highlighted connector and UART_2 is exported to the blue highlighter connector.
 In order to facilitate the design and development of application on this learning kit,
an extern UART interface was added on the DSPLABS_DT_STK_V1_COMM. This
interface exports UART signals outside the board via de standard RS-232 DB-9
connector. The TTL side of the signals are connected to the 2x5 dark brown highlighted
connector. Using this feature any of the previous interfaces described may be connected
to an outside terminal making the necessary connections. For example connecting purple
highlighted UART connector to the dark brown highlighter connector may offer a way to
interface the GSM modem to an external terminal like a PC.
 The 2x5 pin connectors have the following pin numbering and orientation (the arrow
designated pin 1):

 Fig. 1-5 2x5 pin connector orientation and pin numbering

13579

246810

Digital Telecommunication 13

 All the 2x5 pin connectors have a serial UART interface connected to the pins. The
signals have CMOS logic levels. Not all of them have the same pinout though. In the
following table, the pinout is described for every serial interface.

Pin no DB9 XBee Bluetooth GSM GPS LPC
UART0

LPC
UART2

LPCU
UART3

LPC
UART1

1 - - - DCD - - - - DCD
2 RX TX TX TX TX TX RX RX RX
3 TX RX RX RX RX RX TX TX TX
4 - - - DTR - - - - DTR
5 GND GND GND GND GND GND GND GND GND
6 - - - DSR - - - - DSR
7 RTS CTS CTS CTS - - - - RTS
8 CTS RTS RTS RTS - - - - CTS
9 - - - RI - - - - RI
10 - - - - - - - - -

Table 1 Pin mapping for peripheral UART interface connectors

 Using the pin mapping presented above one has to be aware when interconnecting
various interfaces. Special precautions need to be taken not to generate bus conflict. Bus
conflict may appear for example when after a connection to TX signals are linked. This
can be avoided only after an analysis of the application.
 The minimum external connections that need to be made between the learning kit
and a PC used for developing are the following:

- External power supply: 9-12 VDC, 1000 mA
- Connection using micro-USB cable between the PC and the CooCox JTAG

module
- For external terminal usage: a connection between the DB9 connector of the

DSPLABS_DT_STK_V1_COMM and the serial port of the external terminal
(PC) using a DB9 Serial Cable

1.1.3 General specifications about the GSM/GPRS Modem

 The applications intended for the laboratory lessons of this discipline are oriented on
GSM/GPRS communication. As stated above, the GSM/GPRS components are purple
highlighted: the GSM/GPRS SimCom SIM908 Modem, the embedded GSM antenna, the
SIM card slot, the power-on, power-off button and the 2x5 connector which have the
UART signals from de GSM modem. The SIM908 GSM modem also has an embedded
GPS receiver which has a dedicated 2x5 pin header connector. According to Table 1 the
GSM modem’s serial interface may be connected to the following interfaces: DB9, LPC
UART_2, LPC UART_3 and LPC UART_1.

 14 Introduction

Fig. 1-6 2x5 Block diagram of the GSM modem

 An important statement is that a GSM modem is not an integrated circuit. Practically
a GSM modem is a small board that contains a microcontroller, with an upgradable
firmware running on it, a radio module, some additional memory and a power module.
 Giving the fact that the GSM modem is a very complex module, a much more
simplified diagram is presented in Fig. 1-6. The idea is to eliminate all the pins that do not
present interest for this laboratory applications.
 The first pin that needs to be analyzed is the NETLIGHT pin. Its behavior defines
the state of the GSM modem from the network registration point of view. In the case of
the learning kit this pin is connected to a LED so that its behavior can be visually analyzed.
In general, the following states define the way this line communicates the state of the
GSM modem [8]:

- The LED connected to the NETLIGHT pin is off: The SIM908 modem is not
running. In this case the modem will not communicate on any bus and needs to
be power on using the POWERKEY pin.

- The LED connected is 64 ms On and 800 ms Off – In this situation the SIM908
is powered on but the modem is not registered to the mobile network.

- The LED connected is 64 ms On and 3000 ms Off – In this situation the SIM908
is powered on and the modem is registered to the mobile network.

- The LED connected is 64 ms On and 300 ms Off – In this situation the SIM908
is powered on, registered to the mobile network and the GPRS communication is
established.

 Note that all the behavior above presented for the NETLIGHT pin is not standard for
all the GSM modems. Practically every manufacturer is free to use (or not use) this pin as
it sees fit. But in general this behavior can be found in many of the present GSM modems.
 In this presented case, the NETLIGHT mode was connected to a LED for a visual
observation, but, in a much more practical case, the NETLIGHT signal may be connected
to a microcontroller in order to be analyzed by the embedded software.
 The most important signals that needs to be taken into consideration by the embedded
programmer are presented in the above figure. One of the most important signal is
represented by the Power Key signal (PWRKEY). This signal is responsible for the power

SIM908

VBAT GND

PWRKEY

STATUS

NETLIGHT

GSM UART

GPS UART

Digital Telecommunication 15

on and power off operation. An important observation needs to be made. Usually all the
GSM modems after they receive the necessary voltage on the power supply pins they do
not switch on all the modules described above. An assumption is that the only module
switched on is the power module. The microcontroller and the power module do not begin
their designated operations until a specific command. This command is provided through
the PWRKEY pin. Almost all the GSM modems available on the market have a similar
behavior regarding this aspect, but it is not standardized.
 For a much easy usage of the GSM modem by the attending students, the
DSPLABS_DT_STK_V1_COMM was designed so that the PWRKEY is handled by a
push button according to the available hardware manual of the SIM908 GSM Modem.

Fig. 1-7 GSM modem power on logic

 After the DSPLABS_DT_STK_V1 learning kit is supplied with power, the GSM
modem is not running. This can be identified by observing that the NETLIGHT LED on
the board is not on. The GSM modem can be set into running mod by pressing the push
button on the board for a minimum time of 1 second or until the NETLIGHT LED is
turned on. After releasing the button, the LED needs to have the behavior described above
and so identifying the state of the GSM modem.
 It is important to be noted that the modem will not provide any answer on any of the
serial interface busses until the modem is running. No “conversation” with the GSM
modem can be established until the modem is fully powered on by using the button (the
POWERKEY signal).
 Again, this signal, the POWERKEY signal was connected to a push button in order
to provide a didactical approach. In a much more practical scenario, this signal should be
connected, according to the hardware reference manual, to a pin of a host microcontroller.
In this way, the host microcontroller will be responsible for the power on or off state of
the modem.
 As stated above, only after the GSM modem is in running state it will accept any
commands from a host station, let that be a microcontroller or a terminal on a PC. The
protocol accepted by the modem is represented by a subset of an AT command language
which will be presented later in this book.
 The GSM modem has 2 serial interfaces that are used for communication. One of the
serial bus is dedicated to the GPS received and the other serial bus is the main interface
for communicating with the GSM modem. The serial interface is RS-232 compatible [10],
in TTL/CMOS logic levels.

Power on
module

VDD

GSM Modem

 16 Introduction

 Immediately after the power has been switched into running state the serial interface
is activated but, if using the modem with factory defaults, it will not be synchronized on
any BAUD rate. A useful property of the serial interface is the AUTOBAUD capability
where the serial interface will try to automatically detect the BAUD rate which the host
will use to communicate based on a pre-established pattern. The host (PC or
microcontroller) will have to send a specific pattern before any attempt of communication
with the modem. When receiving the pre-established pattern the modem will empirically
detect the BAUD rate used by the host. The pre-established pattern that the GSM modem
awaits to perform AUTOBAUD is “AT” followed by the 2 special characters Carriage
Return (CR) with hexadecimal ASCII code 0x0D and Line Feed (LF) with hexadecimal
ASCII code 0x0A. These 2 special characters are usually obtained by the press of the
Enter key on the computer keyboard. After a successful auto BAUDRATE operation the
modem should respond with the text “OK”. Two important observations need to be made:

1. Under no circumstances, after the modem is switched into running state (power
on) the host should send anything different from the AUTOBAUD pattern.

2. The AUTOBAUD is an operation based on measurements and therefore may not
be always successful. The first pattern may not be sufficient for AUTOBAUD for
a number of reason. A number of AUTOBAUD retries need to be expected by
sending several patterns until (not sooner than 1 second) the GSM Modem
responds.

 Only after a successful AUTOBAUD procedure the host may send other AT
commands to the modem. The structure and the meaning of the AT commands accepted
by the GSM modem can be found in the SIM908 AT Command Manual [11]. There are
4 types of AT commands as described in the manual and presented in the following table:

Command type Syntax Meaning
Test command AT+[command]=? The modem returns the command

syntax, parameters and parameter value
range

Read Command AT+[command]? The modem returns the values of the
parameters currently set for the specified
command

Write Command AT+[command]=value The modem writes the parameters
specified by the command and return the
result of the operation

Execution
Command

AT+[command] The modem returns non-writable
variables that reflect internal processes
of the GSM modem

Table 2 AT Command types

 Not all the commands have of the 4 types. It depends on the meaning of the command
which types are implemented. This information is found in the documentation for each
AT command separately which has to be analyzed before using a command.

Digital Telecommunication 17

1.1.4 Provided materials

 The attending students for the laboratory applications of this discipline will have
online and offline access to the necessary documentation. In this paragraph the available
materials will be presented.
 First of all, the students will have access to a full hardware [8] and software [11]
documentation about the GSM modem. This documentation is essential for establishing a
first successful “discussion” with the GSM modem over the serial UART interface.
 The learning kit will be made available for the attending students during the
laboratory sessions as well with a software library and example project for the
microcontroller.
 From a software point of view, the scope of these laboratory applications is not for
the students to low level configure the peripherals of the microcontroller available but to
design higher level software. Having this as a first consideration, a fully working software
library will be provided as well as a basic project for the Keil uVision developing
environment along with the necessary code examples. The library has a full
documentation available, later presented in this material, as well as an online Doxygen
generated documentation oriented at code level explanations.

1.1.5 Laboratory applications planning

 The practical aim for this laboratory is that the attending students to design and
implement a software for basic operations using the GSM/GPRS network via a
GSM/GPRS modem. Also, a theoretic aspect of the applications is to train the attending
students to analyze, design and implement a communication protocol between a host
processing unit and a peripheral. This methodology should help the attendees in
designing, analyzing and implementing both GSM and non GSM automation related
applications as well as to be able to design and implement various communication
protocols.
 The laboratory lessons begin with establishing a first communication with a GSM
modem using a PC as a final terminal. Students need to “talk” to the GSM modem via the
PC terminal software in order to obtain information about its status. Such communication
will be supported by the AT command manual explaining the accepted commands by the
GSM modem [11]. The first lesson also has a theoretical part where the attendees must
analyze the syntax of the response of the GSM modem and establish the prime rules for
designing the communication protocols. After the presentation of necessary steps for
implementing the AT command response language, the students need to prepare, as a
homework, a finite state machine that designed the previously analyzed protocol.
 The second laboratory applications focuses on implementing the protocol designed a
lesson before, in a standard C programming language developing environment (ex.
Microsoft Visual Studio). The GSM modem will be simulated using text files that contain
the necessary test cases. In a designated period of time, the students need to develop,

 18 Introduction

implement and test the protocol using simulated responses from the GSM modem in test
text files.
 There will have to be two finalities from these two laboratory applications. One
finality will be a fully functional AT command response parser, without the protocol
exceptions. The other finality will be a test that will have to evaluate the student’s capacity
in analyzing, designing and implementing in pseudo-code a communication protocol
similar to the one used by communicating to a GSM modem.
 The following laboratory applications will be directly focused on the provided
learning kits. Therefore laboratory work 1.4 will introduce the Keil uVision development
environment and the basics of the driver documentation will be presented. The students
will have to understand how to use the provided documentation. They will also have to
write the first basic programs, upload them on the board and debug if necessary. These
first basic programs will be oriented on using the LED driver, the UART driver, the printf
redirection and the software timer.
 One of the most important application is laboratory work 1.5 . This work is crucial
for successfully accomplish the coming laboratory works. This session aims at the
integration of the implementation developed and tested earlier in laboratory work 1.3 into
the board. The students will be trained in how to realize this integration. The final result
of this session will have to be a program that configures the BAUD rate of the GSM
modem, requests and prints the RSSI value on the debug terminal with a frequency of 1
Hz. More status information will be obtained from in modem in laboratory work 1.6 and
all of them will be requested and printed on the debug terminal sequentially one after
another maintaining the print frequency of 1 Hz.
 More advanced operations will be presented in laboratory work 1.7 where the
students will have to manage the SMS messages by printing the available messages
currently saved on the SIM card and also by writing the necessary code to send SMS
messages.
 The final mandatory laboratory work, 1.8 , students will have to put everything
together and implement a graphical terminal on the LCD and Touchscreen that performs
simple functions.
 In order to facilitate the execution of the laboratory applications the students should
be organized in groups of 2. It will be mandatory for the students to maintain the same
organized teams for the rest of the semester. The students that will form a team will be
responsible as a whole for the entire laboratory applications and will be evaluated
accordingly.

Digital Telecommunication 19

 The proposed planning for the laboratory applications is presented in the next table:

week Laboratory work Observations
1 Establishing laboratory groups
2 Introduction + Laboratory work 1.2 Establish groups of 2
3

Laboratory work 1.3

4
Evaluation of laboratory work
1.3

5 Test: protocol design Evaluation of test
6 Laboratory work 1.4
7

Laboratory work 1.5

8
9 Laboratory work 1.6 Evaluation 1.5 and 1.6
10

Laboratory work 1.7

11
12

Laboratory work 1.8

13 Evaluation 1.7 and 1.8
14

Table 3 Laboratory applications planning

1.2 Laboratory work – GSM AT command language

 This first application will address the following aspects:
- Initiate communication with the GSM modem using a PC application as a

terminal
- Analyze the form of the responses of the GSM modem in order to extract the

general syntax of the AT command response
- Based on the extracted AT command response form, the first steps in protocol

design will be presented
 Before this application can properly begin, the attendees need to process some initial
documentation in order to know the basics. As a first pre-assignment please read the
introduction of this manual focusing on paragraph 1.1.2 which presents the general
aspects of the learning kit and paragraph 1.1.3 related to the GSM modem. That main key
questions that the attendee must find an answer to, may be the following:

- What are the main components related to the GSM communication on the learning
kit? Where can they be found?

- How can we visually identify the state of the GSM modem?
- What kind of bus the GSM modem uses to communicate?
- What are the necessary connections that need to be made in order to connect the

GSM modem to an external terminal through the serial DB9 connector?
- What are the means the GSM modem can be power on or off?

 20 Laboratory work – GSM AT command language

- What is AUTOBAUD and what does the host have to do in order to successfully
synchronize the GSM Modem’s BAUD rate to the BAUD rate of the host?

 ASSIGNMENT 1: Read the paragraphs suggested above and find the answers to the
questions.

 The first part of the application aims at starting the first communication with the
GSM modem. In order to achieve this, the serial interface of the GSM modem must reach
a host PC where a dedicated serial terminal will be used. First of all, the serial interface
of the GSM modem will be connected to the external serial interface of the board. The
link will be made by connecting the purple highlighted 2x5 header pin connector (the
serial interface connector belonging to the GSM modem) to the dark brown highlighted
2x5 header pin connector (the external serial interface) using a provided cable. Another
set of connections need to be made outside the board using a standard DB9 serial cable to
connected the external serial interface of the board represented by the DB9 connector to
a dedicated serial port on a host PC. Having all of these connections made, the serial
interface signals from the GSM modem will be directly connected to a host PC.
 A dedicated serial port belonging to a host PC may easily be accessed by using a
serial terminal. The serial terminal is a dedicated software that is able to configure and
open a serial port and can be used to send and receive data through one the serial interfaces
of the host PC. The serial terminal that will be used in all the laboratory applications is
Docklight scripting.
 Docklight scripting is an easy to use but powerful serial terminal software. The main
advantages of Docklight scripting are:

- possibility to have access to all the settings of the serial port
- can function as a TCP/UDP client or server
- offers the possibility to define and send macros over the line (serial or network)
- has scripting features in order to simplify protocol interpretation
- offers good representation of unprintable characters
- byte interpretation may be ASCII, hexadecimal, decimal and binary

Digital Telecommunication 21

Fig. 1-8 Docklight main window

 The main window of Docklight offers quick access to all of the features. The
command bar contains practically all the necessary commands to configure, open, close
and enable data write to the serial port.

Fig. 1-9 Docklight command bar

 The active serial port along with its current configuration is displayed on the right
side of the bar. In order to modify the COM port or the configuration a double click on
the COM port name (ex COM 2 in Fig. 1-9). The configuration window is displayed in
Fig. 1-10.

 22 Laboratory work – GSM AT command language

Fig. 1-10 Docklight COM port configuration window

 The configuration of the serial port does not imply also the opening of the COM port
for receiving and transmission. These operations are made using some of the buttons on
the command bar in Fig. 1-9. The buttons that present the most interest are: Start
Communication, Stop Communication, Keyboard Console On and Clear Communication
Window. These commands are highlighted in this order in Fig. 1-11.

Fig. 1-11 Docklight most used commands

 The most important commands found on the command bar are those responsible for
opening and closing the serial COM port. The first two highlighted buttons in the above
figure are responsible for these actions. The opening of the port is activated through the
Start Communication button and the closing the port through the End Communication
button. In the moment the COM port has been successfully opened the state is updated
below the button bar and Docklight scripting is ready to receive data through the serial
port which will be displayed in the main window in the currently selected format. The
window may be cleared using the Clear Communication Window. It is important to
mention that opening the communication window will only activate the receive process.
Any typed data in the main window will be discarded. In order to activate the transmission
of data using the keyboard the Keyboard Console On button must the accessed. The status
bar will be updated accordingly.
 The main window of Docklight scripting displays the received and transmitted data
in a strictly defined format. Each operating is preceded by a full timestamp along with a

Digital Telecommunication 23

tag that specified whether it is a transmission ([TX]) or a reception ([RX]). Usually the
transmitted data are colored in blue and the received data in red. The special characters
are also displayed using a simple syntax: the definition of the special character according
to the ASCII table between angle brackets. A sample of a short transaction displayed by
Docklight scripting may be the following snippet.

Code listing 1-1 Docklight scripting communication sample

04.01.2016 12:21:51.575 [TX] - AT<CR><LF>

04.01.2016 12:21:52.455 [RX] - <CR><LF>
OK<CR><LF>

 It is important to understand that the sequence <CR> for example is NOT a sequence
of 4 characters. The actual meaning of the notation is the representation of the Carriage
Return (CR) character (1 byte long of value 0x0D).

 ASSIGNMENT 2: Open Docklight Scripting, configure the port for a BAUD rate
of 115200 bps, 8 bit per character, 1 STOP bit and no parity. Open the COM port and
activate the keyboard transmission feature.

 In order to successfully initiate a communication with the GSM modem, as presented
in paragraph 1.1.3 , the modem first needs to synchronize its communication port BAUD
rate with the one of the host. The procedure, described in the previous sections, states that
in order to initiate a proper AUTOBAUD the simple AT command, followed by Carriage
Return and Line Feed characters (Enter) needs to be sent to the modem. The AUTOBAUD
procedure is successful after an “OK” response from the modem. Such a sequence
example is presented in Code listing 1-1. Only after a successful AUTOBAUD procedure,
the host may communicate using other AT commands with the GSM modem. If the
AUTOBAUD procedure fails (identified by a lack of response from the modem) the only
applicable method to restart it is to power off and then power on again the GSM modem.

 ASSIGNMENT 3: Power on the GSM modem and, using Docklight scripting,
initiate a communication with the modem performing AUTOBAUD. Search the AT
command manual for the necessary commands that can accomplish the following
functions:

- retrieve the RSSI value in ASU
- retrieve the status of network registration
- retrieve the name of the currently selected operator
- retrieve the list of all the operator names known by the GSM modem
- retrieve the IMEI

 Send the above found commands to the GSM modem and analyze the response from
a syntax point of view.

 24 Laboratory work – GSM AT command language

 In order to design and implement a library that is capable to parse and extract the
data from the GSM modem, the communication protocol needs to be analyzed first. Only
after a full analysis of the protocol, one can design the algorithm to implement it as long
with the needed data structures.
 First of all it is important to mention that, giving the fact that the transmission bus is
a serial interface, the characters are transported one by one, making it mandatory for the
parse algorithm to consider a character by character analysis. Considering this aspect the
best solution for implementing the protocol would be using a finite state machine
approach.
 Another important observation is that, even though in the following paragraphs we
will extract a general form of the AT command response, exceptions will also be present
and will be treated separately. During the first stage of our analysis we will only consider
the general form without any exceptions making it easier to design the finite state
machine. The exceptions will only be treated when needed.
 We will begin our protocol analysis by studying various AT command responses
from the GSM modem. Only the responses will be analyzed, the transmitted commands
are of no interest, mainly, because they are sent by a host and can be easily formatted
accordingly. In the code listings below, several responses are presented. As stated before
the TX line, the first line, will be ignored. Our analysis begins from the first RX line in
each case.

Code listing 1-2 Command response for simple AT command

04.01.2016 12:21:51.575 [TX] - AT<CR><LF>

04.01.2016 12:21:52.455 [RX] - <CR><LF>
OK<CR><LF>

 Code listing 1-3 Command response for AT+CSQ

04.01.2016 20:35:55.686 [TX] - AT+CSQ<CR><LF>

04.01.2016 20:35:57.018 [RX] - <CR><LF>
+CSQ: 27,0<CR><LF>
<CR><LF>
OK<CR><LF>

 Code listing 1-4 Command response for AT+CREG

04.01.2016 20:51:19.717 [TX] - AT+CREG?<CR><LF>

04.01.2016 20:51:21.928 [RX] - <CR><LF>
+CREG: 1,1<CR><LF>
<CR><LF>
OK<CR><LF>

 Code listing 1-5 Command response for AT+COPS

04.01.2016 20:52:36.940 [TX] - AT+COPS?<CR><LF>

04.01.2016 20:52:38.444 [RX] - <CR><LF>
+COPS: 0,0,"Vodafone RO",2 <CR><LF>
<CR><LF>
OK<CR><LF>

Digital Telecommunication 25

 Code listing 1-6 Truncated command response for AT+COPN

04.01.2016 20:53:27.445 [TX] - AT+COPN<CR><LF>

04.01.2016 20:53:29.495 [RX] - <CR><LF>
+COPN: "001010","Test PA128-PA4"<CR><LF>
+COPN: "00101","Test PA128-PA4"<CR><LF>
+COPN: "20201","GR COSMOTE"<CR><LF>
+COPN: "20205","vodafone GR"<CR><LF>
+COPN: "310160","T-Mobile"<CR><LF>
+COPN: "31016","T-Mobile"<CR><LF>
+COPN: "310170","AT&T"<CR><LF>
+COPN: "356110","C&W"<CR><LF>
+COPN: "90115","OnAir"<CR><LF>
+COPN: "90117","Navitas1"<CR><LF>
+COPN: "90118","Maritime Wireless"<CR><LF>
<CR><LF>
OK<CR><LF>

 Code listing 1-7 Command response for unknown or erroneous command

04.01.2016 20:57:30.058 [TX] - AT+ABC<CR><LF>

04.01.2016 20:57:32.476 [RX] - <CR><LF>
ERROR<CR><LF>

 Taking a close look on the examples above, we can extract the following aspects:

- all responses from the GSM modem contain only printable characters, more
specific from ASCII table the interval of characters begin from character 0x20
and ends with 0x7E. The CR and LF characters are also added to the interval.

- each response begins with a new line, more specific with the characters CR and
LF;

- each response is concluded with OK followed by CR and LF or ERROR followed
by CR and LF;

- there are commands where no data response lines are present, as presented in
examples Code listing 1-2 Code listing 1-7;

- there are commands where one line of data response is present which ends again
with CR and LF as presented in examples Code listing 1-3 Code listing 1-4 and
Code listing 1-5;

- there are commands where more than one line of data response is present. Each
data response line ends with CR and LF characters as presented in Code listing
1-6;

- each data response line begins with character ‘+’;
- in the case of the commands containing one or more data response lines the

sequence of response lines ends with CR and LF. Also giving the fact that a
response line ends with the characters CR and LF, the whole sequence of data
response lines ends practically with 2 sequences of CR and LF characters.

- each response line contains characters from ASCII table interval 0x20 – 0x7E but
do not contain the CR and LF characters. The CR and LF characters are only used
to mark the ending of a data response line.

 26 Laboratory work – GSM AT command language

 Based on the observations above the general form of an AT command response may
be following:

Fig. 1-12 General form of AT command response

 The general form presented above may also be described as using a language
grammar syntax form as following:

 Code listing 1-8 General syntax of AT command response

AT_Command_response ::= \r\n at_command_respone_block at_command_final \r\n

at_command_final ::= "OK" | "ERROR"

at_command_response_block ::= response_line_list \r\n | eps

response_line_list ::= '+' response_line_string \r\n response_line_list | eps

response_line_string ::= [a-zA-Z\!-\@\[-\`\{-\~]*

 The next step in defining the architecture to follow for implementing our current
protocol is to design the finite state machine capable in parsing the protocol. Practically
everything is resumed to a lexical analysis which is widely used in compiler design [12].
The finite state machine should be oriented in having a successful design of a correct
pattern of the protocol taking into account the character by character approach. Such a
finite state machine that implement the AT command language may be the following:

<CR><LF>
+ response_line_1_string<CR><LF>
+ response_line_2_string<CR><LF>
. . .
+ response_line_N_string<CR><LF>
<CR><LF>

OK | ERROR <CR><LF>

optional

Digital Telecommunication 27

Fig. 1-13 Finite state machine for AT command response language

 The finite state machine presented in Fig. 1-13 is incomplete and only gives an
example of an approach. Not only that it does not implement all the situation but it also
only handles a simple validation of the protocol.
 Giving the fact that the result of an actual implementation should also extract the
necessary information encapsulated within the protocol, in the next paragraph, we will
analyze what data is useful for the end user and what could be the necessary data structures
to support it. Taking another short look over the protocol syntax in Fig. 1-12 one can
identify some important aspects regarding the usefulness of the data:

- The CR and LF characters are only used for encapsulation within the protocol and
they are needed only from a syntactic point of view, but not as a data content
component.

- Each response is concluded with the strings “OK” or “ERROR” which should be
used not exactly as a string but more as a value to state that the transmitted
command was executed successfully by the modem or not. A Boolean value
should suffice.

- Most of the AT command responses contain a number of data response lines
beginning with character ‘+’ and ending with the CR and LF characters. The
actual content of these lines can be treated as string in the first phase. Practically
these line contain the main information transmitted by the GSM modem.

 Having this analysis made the following more actual data members may be used:
- A Boolean value designating whether the “OK” or “ERROR” strings were

returned by the modem
- An array of strings that contain the actual data response lines without the ‘+’

character and without the ending CR and LF characters
- The number of response lines returned by the GSM modem

START 1 2 3 4 5

END
NO ERROR

10

Ch==’E’

20

Ch==’+’

21
Ch != CR

22

...

Ch == CR
...

Ch != CR

END with
Syntax
Error

Ch != LF Ch != CR

Ch != ‘K’

 28 Laboratory work – GSM AT command language

 Given the fact that C programming language will be used for implementation
throughout the laboratory, an example of the data structure, implemented in C is provided
in in Code listing 1-9. The data types are the standard data types provided by the stdint.h
library. Also, because the C programming language does not define a standard Boolean
data type a 1 byte integer was used instead.

 Code listing 1-9 AT Command proposed data structure

#define AT_COMMAND_MAX_LINES 100
#define AT_COMMAND_MAX_LINE_SIZE 128

typedef struct
{
 uint8_t ok;
 uint8_t data[AT_COMMAND_MAX_LINES][AT_COMMAND_MAX_LINE_SIZE + 1];
 uint32_t line_count;
}AT_COMMAND_DATA;

 The finite state machine presented above should finally also extract the data
described above, which is encapsulated within the protocol, and save it into a similar
structure as the one presented in Code listing 1-9.

 HOME ASSIGNMENT: Starting from the finite state machine from Fig. 1-13 write
(on paper) a complete finite state machine that is capable of preforming the following
functions:

- Parse and identify the correct form of the AT command response syntax from Fig.
1-12. The finite state machine must implement the whole syntax presented above.

- Add in the right places of the newly written state machine the necessary notations
to describe where and how a data structure similar to Code listing 1-9 should be
completed with the data received via the protocol.

 Also write a pseudocode implementation of the finite state machine.

Digital Telecommunication 29

1.3 Laboratory work – GSM AT command language implementation in C

 This laboratory application is oriented on the actual implementation of the finite state
machine designed in the previous laboratory work. The language that will be used for
implementation is ANSI C. The developing environment available on the laboratory
computers will be a version of Visual Studio higher than Visual Studio 2010.
 Practically the students will have to develop a library (presented as a separate couple
of a C code file along with its C header file), which provides a function that implements
the finite state machine. The function that will be exported outside the library, via header
files, needs to be per character based, with minimum one parameter specifying de current
character. This means that the function has its main functionality based on the current
character. The function has to return the state of its execution. The most common states
of function returns could be:

- the function has finished without an actual result and more characters are needed
to finish the state machine

- the function has finished and has found a valid AT command response
- the function has finished and has exited with an error

 The function will not be allowed to contain any cycles and its execution is needed to
be per character.
 An example function prototype along with an enumeration type return value may be
the following:

 Code listing 1-10 Proposed AT Command parse function prototype

typedef enum
{
 STATE_MACHINE_NOT_READY,
 STATE_MACHINE_READY_OK,
 STATE_MACHINE_READY_WITH_ERROR
}STATE_MACHINE_RETURN_VALUE;

STATE_MACHINE_RETURN_VALUE at_command_parse(uint8_t current_character);

 The return values proposed in the enumeration type have the meaning described
above and should ONLY REFLECT THE RETURN OF THE STATE MACHINE
REGARDING SYNTAX. No confusion should be made between the return values of the
function implementing the state machine and the OK/ERROR strings returned by the
GSM modem. A command that finished with the OK or ERROR string may be correct
from a syntax point of view.
 The most used method to implement a finite state machine in the C programming
language is using switch-case statements. An example of an implementation of the first 2
states presented in Fig. 1-13 may be the following:

 30 Laboratory work – GSM AT command language implementation in C

 Code listing 1-11 Proposed AT Command parse function implementation example

STATE_MACHINE_RETURN_VALUE at_command_parse(uint8_t current_character)
{
 static uint32_t state = 0;
 switch (state)
 {
 case 0:
 {
 if (current_character == 0x0D)
 {
 state = 1;
 }
 break;
 }
 case 1:
 {
 if (current_character == 0x0A)
 {
 state = 2;
 }
 else
 {
 return STATE_MACHINE_READY_WITH_ERROR;
 }
 break;
 }
 case 2;
 {
 if (current_character == 'O')
 {
 state = 3;
 }
 else
 {
 return STATE_MACHINE_READY_WITH_ERROR;
 }
 }
 }
 return STATE_MACHINE_NOT_READY;
}

 Having a small analysis on the example above we can state that the parse function
that needs to be implemented must work using a character by character approach. This
parse function is called for each character. Furthermore, the function has no knowledge
from where and how the character are acquired. Having this as a behavior of the function
we can observe that a lot of variable need to retain their execution from one function call
to another. Such variable may be: the current state, indexes in the string array, index of
the character in the string within the string array, number of line, etc. This can be achieved
either by using global variable in the code file containing the function or by using static
variable declared inside de function similar to the state variable in the example above.
 It is noted that the function does not return the structure containing the data extracted
from the protocol mainly because returning such a big result on the stack is not
recommended. Other approaches have to be considered. For example having the structure
be transmitted (with pointer reference) to the function at each call or by using it declared

Digital Telecommunication 31

globally. The caller function that uses the parse function must know when to access the
resulted data structure depending on the return value of the parse function.
 The main idea of this laboratory is for the students to implement this function in C
using a standard C compiler in order to be platform and system independent. The exported
parse function, the data structures and all other functions needed to complete this task
must be included in a library. The library in C needs to be formed out of 2 files: a C file
and a header file which contains the external declarations. Having this approach assures
that this library may be then included in any C environment, for example in a Keil uVision
project, which will generate the microcontroller image needed on the learning kit.
 Another important aspect is that the implementation may not contain anything
outside the standard C libraries in order to be than used on a microcontroller. Furthermore
it is highly recommended that the data types would be the ones defined by the standard C
library stdint.h.
 Students may use any standard C environment for developing console applications
in order to develop and the AT command parse library. However, on the computers in
laboratory only a version of Microsoft Visual Studio will be available.
 In order to create a standard C console application in Visual Studio the following
steps need to be taken: in the File Menu -> New -> Project; in the right tab select Visual
C++ then Win32 Console Application in the middle window. The Win32 Application
Wizard will open. In this stage click on Next (and not Finish) in order to configure the
project. The best way to obtain a simple, standard project is to select Console Application
and check the Empty project option as present in Fig. 1-14.

Fig. 1-14 Visual Studio Win32 Console C application project wizard settings

 After clicking on the Finish button the Visual C++ Console Application blank project
will be created without any source or header files added. A very important aspect is that
when creating and saving a C code file the extension needs to be .c and NOT .cpp in order
to force the compiler to treat the code using the ANSI C standard.

 32 Laboratory work – GSM AT command language implementation in C

 The main program, that will be developed, will be a tester for the parse function and
practically it will read text files containing various AT command responses. The files will
be read character by character and the program will call the AT command parse function
for each character. The program will then test the return value and print the command that
was just extracted from protocol when the state machine announces a normal finishing. In
case the stream was incorrect an error message describing the situation will be printed. A
possible state diagram of the test program is illustrated in Fig. 1-15.

Fig. 1-15 AT command parser test program state diagram

 The only aspect that needs to be clarified before an actual implementation can begin
is the method on how can the test files be generated. One test file should only contain one
single AT command response. It is advisable not to use one big test file containing all the
test cases (numerous AT command responses). In order to create a test file the students
may use either the actual responses from the GSM modem taken from a communication
using Docklight scripting or they can use the examples presented in the previous

Get test file path
from command line

argument

Open test file

EOF? Close test file
YES

Get next character

NO

Call parse function
with read character

as argument

Test parse function
return value

START

EXIT TEST
PROGRAM

Parser has
finished

Print data structure
results

NO

Parser finished OK

YES

YES Print the error
found

NO

Digital Telecommunication 33

laboratory work: Code listing 1-2, Code listing 1-3, Code listing 1-4, Code listing 1-5,
Code listing 1-6, Code listing 1-7.
 One important question could be how to generate the special character CR and LF?
Furthermore, how can we be assured that these characters are generated correctly? In a
Windows system a new line, a press of the Enter key, usually generates a <CR><LF>
sequence. However, in a UNIX system, the Enter key, only generates one of the 2
characters. In order to establish how the new line characters are generated in a text file,
an abstract, encoded representation should be displayed.
 A famous text editor, which is capable of displaying a notation for the special
characters (similar to how Docklight scripting does), is Notepad++. In order to configure
Notepad++ to display the special characters we need to select: in the menu bar -> View -
> Show Symbol -> Show End of Line. Make sure that the Show End Of Line menu item
is checked. An example of the response of AT+CREG command used for a test file in
Notepad++ with the representation of the end of line characters can be found in Fig. 1-16.

Fig. 1-16 AT command test file in Notepad++

 ASSIGNMENT: Write an ANSI C library that implements an AT command parser
and extracts the data transported by the protocol. Write an ANSI C standard program to
test the AT command parser library using test files as suggested in this current laboratory
work. Test files should cover all possible situations, both correct, and incorrect as
described in the current and previous laboratory works.

 34 Laboratory work – Introduction to The Keil uVision environment

 The C program and library should not use any non-standard libraries. The test
program should take the test file path as an argument and print the status. The library
should be isolated from the test program as suggested. Furthermore, in order to obtain the
exact data from the test files open the files in BINARY mode rather than text mode. In
text mode, new line interpretation could cause significant issues to both the test program
and the AT command parser library itself.
 Each student group will have to make their OWN and UNIQUE implementation of
the AT command parser library. The time interval for this assignment is 2 weeks.
 HOME STUDY: For the next laboratory: review the documentation of the driver
manual (presented and the end of the laboratory works in this document) and the Doxygen
documentation in order to be able to write programs on the learning kit to perform the
following: LED blinking, software timer and UART communication.

1.4 Laboratory work – Introduction to The Keil uVision environment

 This laboratory work contains the first exercises that will be conducted directly on
the learning kit. Furthermore, all the following laboratory works will be oriented on
developing on the hardware target. All of the implementations, as stated before, will be
made using ANSI C programming language and the developing environment will be Keil
uVision. Keil is one of the most popular environment for application development on
microcontrollers based on ARM architectures. It is a complex and stable environment and
provides various tools for debugging, support for external debuggers and programmers as
well as a simulation and emulation environment.
 Before continuing with the laboratory work some connections on the learning kit
need to be made. Using the information in paragraph 1.1.2 and a provided cable, make
sure the following connections are made:

- The serial interface of the GSM modem is connected to the UART_3 interface of
the microcontroller.

- The UART_0 interface of the microcontroller is connected to the external DB9
serial interface

 The following paragraphs will describe some of the base functions of the Keil
uVision development environment. The main window of the environment is presented in
Fig. 1-17.

Digital Telecommunication 35

Fig. 1-17 Keil uVision environment

 On the left side of the window, a project explorer which displays the project file tree
is available while the code files are opened using tabs in the middle part of the window.
The most important functions in Keil uVision are the following:

- Program compilation – it may be done by selecting Build Target from the Project
Menu or by finding the correct button in the button bar

- Project clean – it may be done by selecting Clean Target from the Project or by
finding the correct button in the button bar

- Download compiled program into the microcontroller – it may be done by
selecting Download from the Flash menu. Usually after a download the
microcontroller is being reset and begin the execution of the newly downloaded
program

- Erasing the microcontrollers flash memory – from Flash menu selecting Erase
- Start simulation or emulation – from Debug menu select Start Stop Simulation.

Same option is used for exiting simulation/emulation
- Watching variables – in simulation/emulation mode select the desired variable,

right click and select Add variable to watch.

 In both modes, simulation and emulation, the environment give the user access both
to the microcontrollers core registers and also to the peripheral special function registers
by accessing the menus.
 One of the most important aspect of Keil is that it can work either as a simulator or
as an emulation using a debugging hardware directly on the target. The

 36 Laboratory work – Introduction to The Keil uVision environment

simulation/emulation mode is practically transparent to the user. In order to change
between the 2 modes, a right click on the project name (in our case Target1) in the project
explorer on the right will reveal a menu where Options needs to be selected. This selection
will bring up the Project options window where the following settings can be found in the
Debug tab:

Fig. 1-18 Keil uVision project options

 On the left side of the project window the Use Simulator setting selects the simulator.
Selecting the corresponding option on the right side of the window will select the
debugger and the emulation will be switched to, instead. In our case the debugger used
will be CooCox Debugger.
 ASSIGNMENT 1: Search through the menus of Keil uVision and find how the
following function may be accessed: In debug mode: breakpoint management (adding,
disabling, enabling, removing), access to core registers and special function registers of
the periphery, adding watch for variables, run program, stop run program, step into, step
out.
 Giving the fact that the main idea of all the laboratory work sessions is to concentrate
on the communication with the GSM modem and on the implementation of various
functions of the GSM modem it is out of the scope of this laboratory to present the
peripherals of the microcontroller. It is also out of scope to demand from the students to
write drivers for the peripherals. Such drivers are needed in order to provide a stable

Digital Telecommunication 37

environment to implement all the requested tasks. Having this into consideration, a driver
library is provided to the students. The most important drivers implemented by the driver
library are the ones related to UART communication, LED management, LCD and
TOUCHSCREEN management and printf redirection for debugging.
 In order for the students to be able to use the library a full documentation is presented
at the end of all the laboratory works explaining how every driver module may be used.
Code examples are presented also. Furthermore, in order to facilitate using the driver
libraries functions a Doxygen documentation is available online which presents a low
level documentation of the manual.
 Another provided material to the students is a basic fully configured Keil uVision
project that contains both the driver library as well as examples. This basic project will be
used from this point on for building the applications. The students should use this basic
project as a starting point and not make their own project from scratch as this could prove
to be difficult and time consuming which again is out of the scope of this discipline.

Fig. 1-19 Basic Keil project file structure

 As presented in Fig. 1-19 the provided project is structured using 3 project folders.
The utils folder contains the ring buffer data structure and the timer software. These 2
module are used by all of the other driver modules but may also be used by the students
in their development, especially the software timer. Another folder, DRV, contains the
actual driver modules. The main folder contains the microcontroller initialization files and
the code file containing the main function. Students are encouraged to insert their code
file either in this folder or in a newly created folder but NOT in the folders DRV and utils.

 38 Laboratory work – Integration of the AT command parser in Keil

 The main.c file contains all the initializations required by the driver library and
microcontroller. One of the most important function that is called first in main is
BoardInit(). This function is responsible for initializing all the driver modules as well as
the software timer system and the printf redirection (UART 0 of the microcontroller). The
next function called by main is testLCD() which displays a test on the LCD containing the
Romanian National Flag and the Hello text. This call may be omitted thus it is only a test
for the LCD. The rest of the main function content is made up of examples of usage for
some of the driver library usage.

 ASSIGNMENT 2: Write a short program using the basic Keil project provided,
which blinks the LEDs on the board with a frequency of 1 Hz in an infinite loop. Use the
LED driver module and the timer software wait module which uses an internal software
timer to generate waits. Find the appropriate functions to accomplish the task.

 ASSIGNMENT 3: Modify the program in the previous assignment to use a
dedicated timer software. The program should poll the state of the software timer. Before
using it, the program needs to request a software timer, configure it in the correct mode
and then start the configured timer.

 ASSIGNMENT 4: Modify the program in the previous assignment to use the
software timer with a callback to announce the interrupt event. Note that the callback
function is executed in processor interrupt context.

 ASSIGNMENT 5: Modify the program in the previous assignment to send a
message using printf each time the LED blinks. In order to see the message please open
Docklight scripting on COM1 with the following settings: 8 bit per character, no parity, 1
stop bit and a BAUD rate of 115200 bps.

 HOME ASSIGNMENT: Please make sure the AT command parser library is
functioning properly and is ready for integration in the next laboratory session.

1.5 Laboratory work – Integration of the AT command parser in Keil

 This laboratory work focuses on integrating the AT command parse library
previously developed and tested in a standard ANSI C environment within the provided
basic Keil project. The idea is to establish a short communication with the GSM modem,
but from a program written on the microcontroller. The outcome of this laboratory work
needs to be an infinite loop that requests the RSSI values from the modem and prints it on
the debug console using printf once per second in both ASU and dBmW values.
 In order to accomplish this task example, methods for integration will be presented
along with state diagrams on how the program should work. The design method
considered will be TOP-DOWN. All the methods presented in the following paragraph

Digital Telecommunication 39

are not mandatory to be used by the students. They are free to choose their own
implementation.
 On a hardware level the attendees need to make sure that the modem is power on by
pressing the button on the board as described in chapters 1.1.2 and 1.1.3 .
 First of all, the UART_3 interface of the microcontroller needs to be configured with
the following parameters: a BAUD rate of 115200 bps, 1 STOP bit, 8 bits per character,
no parity and buffered mode enabled. The main function, that needs to be studied for
accomplishing the configuration of UART_3, is DRV_UART_Configure.
 The next step, that needs to be taken, is to provide the necessary sequences in order
to perform the modem’s AUTOBAUD as described in chapters 1.1.2 and 1.1.3 .
Practically an AT<CR><LF> sequence need to be sent to the modem prior of any other
communication. It is advisable to send this sequence several times with a temporization
of 1 second to insure the modem performs the AUTOBAUD. Sending 3 of this sequence
may suffice. An example of how this can be accomplished may be found in following
code:

 Code listing 1-12 Example of sending AUTOBAUD sequence to modem

.....
const char at_command_simple="AT\r\n"
...
int main(void)
{
 ...
 DRV_UART_Write(UART_3, at_command_simple, strlen(at_command_simple);
 TIMER_SOFTWARE_Wait(1000);
 ...
}

 For making things easier it is not necessary for the program on the microcontroller
to wait for an answer from the GSM modem. We can assume that after 3 or 4 sequences
sent to the modem, the AUTOBAUD is successful. Even if it is not successful the rest of
the following commands will receive no answer for the modem.
 Only after sending these sequences we can begin ”talking” to the GSM modem. As
stated above, considering a TOP-DOWN design method the first level, in our case, could
be the infinite loop performing the signal request and print once per second on the debug
terminal. A short example of C like pseudo-code can be found in the following code
snippet:

 40 Laboratory work – Integration of the AT command parser in Keil

 Code listing 1-13 Top level infinite loop pseudo-code example

.....

AT_COMMAND_DATA data_structure;
const char at_command_simple="AT\r\n"
const char at_command_csq = "AT+CSQ\r\n"
timer_software_handler_t my_timer_handler;
...

int main(void)
{
 ...
 uint32_t rssi_value_asu;
 uint32_t rssi_value_dbmw;
 ...
 while (1)
 {
 if (TIMER_SOFTWARE_interrupt_pending(my_timer_handler))
 {
 ExecuteCommand(at_command_csq);
 if (CommandResponseValid())
 {
 rssi_value_asu = ExtractData(&data_structure);
 rssi_value_dbmw = ConvertAsuToDbmw(rssi_value_asu);
 printf(...);
 }
 TIMER_SOFTWARE_clear_interrupt(my_timer_handler);
 }

 }
 ...
}

 In Code listing 1-13 an idea of how the top level infinite loop should look like is
presented. All the necessary functions need to be implemented of course. The timer
software in the above example is used to make a temporization. The execution of
commands have to be made once per second. There could be another solution for
temporization like using TIMER_SOFTWARE_Wait function but in this case the
temporization would have been blocking which is not recommended. In the example
below the configuration of the software timer was omitted thus it needs to be
implemented.
 The most important function, that needs to be addressed, is the ExcuteCommand
function. This function has as main roles to send the command given as parameters and
to wait for a correct response. Making this statement a possible pseudo-code function
body may be:

 Code listing 1-14 ExecuteCommand function pseudo-code example

void ExecuteCommand(const char *command)
{
 SendCommand(command);
 GetCommandResponse(command);
}

Digital Telecommunication 41

 The SendCommand function has practically one important role which is the actual
command string send over the UART line. The only observation here is that, in order to
insure a clean buffer environment when initiating a new command, it would be best to
first flush the buffers of the serial interfaces. Such an idea is presented in the following
code snippet:

 Code listing 1-15 SendCommand function pseudo-code example

void SendCommand(const char *command)
{
 DRV_UART_FlushRX(UART_3);
 DRV_UART_FlushTX(UART_3);
 DRV_UART_Write(UART_3, command, strlen(command));
}

 The last and probably the most important function that needs to be implemented is
the GetCommandResponse function. Its main role is to wait for a valid response from the
GSM modem in a given period of time. A timeout mechanism using a software timer
needs to be implemented here mainly because we need to consider that the GSM modem
is not a reliable communication partner thus it may crash. In such a situation we need to
insure that our software running on the microcontroller detects this situation and does not
get into a blocking state. Giving the fact that a software timer will be used, a prior
configuration before our main infinite loop needs to be taken into consideration. Also, the
software timer handler needs either to be declared globally or sent to the
GetCommandResponse function as parameter in order to have access to it.
 Furthermore, it is very important to mention that the GetCommandResponse function
will be the one responsible in calling our previously developed library for parsing and
extracting data from the GSM modem.
 An example of a pseudo-code implementation for the GetCommandResponse
function may be found in the following code snippet:

 Code listing 1-16 GetCommandResponse function pseudo-code example

...
timer_software_handler_t my_handler;
...
void GetCommandResponse()
{
 uint8_t ch;
 BOOLEAN ready = FALSE;
 TIMER_SOFTWARE_reset_timer(my_handler);
 TIMER_SOFTWARE_start_timer(my_handler);
 while ((!TIMER_SOFTWARE_interrupt_pending(my_handler)) && (ready == FALSE))
 {
 while (DRV_UART_BytesAvailable(UART_3) > 0)
 {
 DRV_UART_ReadByte(UART_3, &ch);
 if (at_command_parser(ch) != STATE_MACHINE_NOT_READY)
 {
 ready = TRUE;
 }
 }
 }
}

 42 Laboratory work – Integration of the AT command parser in Keil

 The rest of the functions presented in our TOP-DOWN analysis will not be discussed
further, thus they will be designed by the attending students.
 All that was analyzed and described above may be synthetized in a state chart
diagram as the one presented in Fig. 1-20.

Fig. 1-20 GSM Modem AT command language communication software diagram

AT Command Modem communication state diagram

Se
nd

Co
m
m
an

d
In
iti
al
iza

tio
n

Ge
tC
om

m
an

dR
es
po

ns
e

Pr
in
t r
es
ul
t d

at
a

Initialization of UART_3 inteface

Request and initialize software
timer for timeout implementation

Send AUTOBAUD sequences with 1
second temporization

Main function start,
BoardInit function call

Infinite loop begin

Flush UART_3 RX buffers

Flush UART_3 TX buffers

Send command string to UART

Initialize local variables
reset software timer
start software timer

Is response parser loop ready

TIMEOUT
Has timer expired (timer

pending interrupt)

Characters available for read

Read and store one character

Call parser finite state machine
function with received character

Get parser function
return value

YES

NO

NO

NO

YES

Print error message
Parse exited OK

Valid response found

YES

Extract data from response lines
Print data in desired format

YES

Digital Telecommunication 43

 ASSIGNMENT: Integrate the AT command parser library developed and tested in
the previous laboratory work into the basic Keil project provided, having the explanations
in this laboratory work as a starting point. It is mandatory that the AT command parser
library should not be copy-pasted into the main.c file but added as separated files (a .c and
.h) in the main folder of the Keil project. The outcome of the program on the
microcontroller should print the RSSI value received via the information return by the
AT+CSQ command. Search the AT command manual for the syntax and how the result
is presented. The RSSI value should be printed in both ASU units and dBmW units. The
transformation from ASU units (as AT+CSQ returns) to dBmW can be made using the
formula [13]:

2 ∙ 113 (1-1)

 The output of the printing should be for example:

Code listing 1-17 Example output of signal printing

04.01.2016 20:57:32.476 [RX] – GSM Modem signal 29 ASU -> -55 dBmW
04.01.2016 20:57:33.476 [RX] – GSM Modem signal 29 ASU -> -55 dBmW

 NOTE: Please remember to power on the modem before anything! The GSM modem
will not respond until a power cycle.
 HOME ASSIGNMENT: Please find and read, from the GSM Modem AT
Command Manual the syntax and usage for the following functions:

- State of network registration (AT+CREG)
- Name of network operator (AT+COPS)
- Modem IMEI (AT+GSN)
- Modem Manufacturer (AT+GMI)
- Modem Software Version (AT+GMR)
- Cell ID and Location ID (extended AT+CREG)

1.6 Laboratory work – Implementation of modem status commands

 This laboratory work focuses on requesting more information from the GSM modem.
Using the program implemented above where the signal RSSI value is printed on the
debug terminal once per second, the student needs to add other prints in order to print
along with the RSSI value the following information extracted from the modem using the
necessary commands:

- State of network registration (AT+CREG)
- Name of network operator (AT+COPS)
- Modem IMEI (AT+GSN)
- Modem Manufacturer (AT+GMI)
- Modem Software Version (AT+GMR)

 44 Laboratory work – Implementation of modem status commands

- Cell ID and Location ID (extended AT+CREG) - optional
 At the first glance of the request of the laboratory work, things seem trivial. The only
aspect that needs to be taken into consideration is that for some of the commands needed
to extract the requested information the response syntax is a little different. While most
of the command responses respect the syntax defined in the previous laboratory works,
there are some commands where we should consider exceptions.
 Let us consider the following response of the AT command that requests the
Manufacturer Identification from the GSM modem:

 Code listing 1-18 Command response for AT+GMI

04.01.2016 20:35:55.686 [TX] - AT+GMI<CR><LF>

04.01.2016 20:35:57.018 [RX] - <CR><LF>
SIMCOM_Ltd<CR><LF>
<CR><LF>
OK<CR><LF>

 We can observe that in Code listing 1-18 the command response is slightly different
from the responses presented so far. The difference is that the response line does not begin
with the ‘+’ character. Practically this is one the exceptions from the AT command
language syntax. The limitation is that if such an exception is present there will be only
ONE response line. No other cases shall be considered in this situation.
 If the previously developed parser is executed on a syntax such as the one in Code
listing 1-18, it will surly fail. The idea is that the parser should be modified in order to
support such an exception. There are many ways to modify the parser. The simplest
method is to inform the parser about the exception that it will encounter. This may be
accomplished either by using a global flag that will be set prior to sending the AT+GMI
command and reset after the response has been received or by using a parameter that will
be sent to the parser.
 OPTIONAL ASSIGNMENT: If needed, in order to test the output of the commands
above make the connections of the board similar to the ones in the first assignment in
laboratory work 1.2 in order to be able to connected to the modem directly with Docklight
scripting as described in the previous laboratory works. After testing the commands come
back to the previous connections on the board.
 ASSIGNMENT: Add the commands above to the implementation and print the
results on the debug terminal. Modify the AT command parser in order to support the
newly introduced exceptions. Extract and interpret the data from the above commands in
order to print a human readable status. The program should in final print once per second
a status such as:

Digital Telecommunication 45

 Code listing 1-19 Example output of signal printing

GSM Modem signal 29 ASU -> -55 dBmW
State of registration: Home network
Operator name: RO Vodafone RO
Modem IMEI: 123456789012345
Modem manufacturer: SIMCOM_Ltd
Modem software version: XXXXXXXXXXXXXXXXXXXXX
Cell ID: 0x1234
Location ID: 0x1234

 All the information should be printed in an infinite loop once per second. The Cell
ID and Location ID are extract from the long version of the AT+CREG commands. Search
the documentation on how to obtain this.

HOME ASSIGNMENT: Please study from the AT Command Manual of the modem
what are the commands for managing the SMS messages. Identify how these commands
should be used.

1.7 Laboratory work – SMS management

 This laboratory work concentrates on introducing the SMS management to the
attending students. The main aspects that will be addressed are how the SMS messages
are stored in the SIM card, reading SMS messages, sending SMS messages and deleting
SMS messages.
 The SMS messages are stored in the memory of the SIM card. The GSM modem
does not have any additional memory of storing external data and uses the SIM cards
memory for this. The SIM card has an organized memory destined specially for storing
SMS messages. The SMS memory is organized in 10 slots, one for each SMS message.
Each SMS message is stored in one slot of the SIM cards SMS memory immediately after
the SMS messages is received from the GSM network. The SMS messages is stored in
the first free slot of the SIM card.
 A problem appears when all the SMS slots in the SIM card are full. In this situation
the GSM Modem, in most of the cases, ignores a newly arrived SMS message from the
network. In many cases, in this situation, the GSM modem doesn’t even announce that a
new SMS message is pending. In order to avoid such a situation the host connected to the
GSM modem must insure that an SMS memory slot is free all the time.
 The first issue that we will address is the one related to reading all the SMS messages
from the SIM card. The AT commands responsible for this action is AT+CMGL. If the
documentation for this command is checked, one can find out that there are some
parameters accepted for this command in order to filter the SMS message listing. In our
case we will not use any filters because we intend to read all the SMS messages.
 As found in the previous laboratory work we will encounter another exception from
the general form of an AT command response. The exception will appear in the response

 46 Laboratory work – SMS management

line string. As it can be found in Code listing 1-8 the response line string contains any
alphanumeric characters togheter with punctuation signs and spaces but not CR and LF
characters, thus these latter characters are used to identify the finishing of such a response
line string. Practically the accepted characters are from character with HEX ASCII value
0x20 to character with HAX ASCII value of 0x7E. The exception is that, for the
AT+CMGL command, when listing SMS messages, an extra CR LF sequence appears in
the middle of a response line string which may be mistaken with a marking of such a line
ending.
 An example of the output of AT+CMGL command may be found in the following
code listing:

 Code listing 1-20 Example output of SMS listing command

08.01.2016 09:02:29.097 [TX] - AT+CMGL="ALL"<CR><LF>

08.01.2016 09:02:35.421 [RX] - <CR><LF>
+CMGL: 1,"REC READ","Notificare","","14/12/15,15:32:28+08"<CR><LF>
Creditul existent este insuficient pentru a trimite mesajul.<CR><LF>
<CR><LF>
+CMGL: 2,"REC READ","Notificare","","14/12/15,15:32:35+08"<CR><LF>
Creditul existent este insuficient pentru a trimite mesajul.<CR><LF>
<CR><LF>
+CMGL: 3,"REC READ","Vodafone","","14/09/30,15:49:49+12"<CR><LF>
i si iti activezi o optiune cu mai mult trafic inclus.<CR><LF>
<CR><LF>
+CMGL: 4,"REC READ","Vodafone","","14/09/30,15:49:51+12"<CR><LF>
Numarul Cartelei tale Internet este: 40732947310. Acest numar iti foloseste la
crearea contului Cartela Internet si la reincarcarea directa<CR><LF>
<CR><LF>
+CMGL: 5,"REC READ","Vodafone","","14/09/30,15:49:51+12"<CR><LF>
Bine ai venit!O data cu prima reincarcare se activeaza automat o optiune cu
trafic inclus de internet. Vei primi vesti!<CR><LF>
<CR><LF>
+CMGL: 6,"REC READ","Notificare","","14/12/15,15:32:42+08"<CR><LF>
Creditul existent este insuficient pentru a trimite mesajul.<CR><LF>
<CR><LF>
+CMGL: 7,"REC READ","Vodafone","","14/09/30,15:50:30+12"<CR><LF>
Oferta Internet cu 150MB trafic a fost dezactivata. Reincarca acum sa beneficiezi
de o optiune cu trafic inclus. Alege-ti oferta potrivita pe
www.vodafone.ro.<CR><LF>
<CR><LF>
+CMGL: 8,"REC READ","MyVodafone","","14/09/30,15:52:31+12"<CR><LF>
Codul pentru activarea contului MyVodafone este : 31395062.Acest mesaj este
confidential. Nu oferiti unor persoane necunoscute codul secret!<CR><LF>
<CR><LF>
+CMGL: 9,"REC READ","MyVodafone","","14/09/30,15:52:57+12"<CR><LF>
Contul tau MyVodafone a fost creat cu numele de utilizator 0732947310. Multumim
pentru alegerea de a utiliza serviciile noastre online.<CR><LF>
<CR><LF>
+CMGL: 10,"REC READ","+40726043403","","14/12/11,16:51:04+08"<CR><LF>
Blue screen<CR><LF>
<CR><LF>
OK<CR><LF>

Digital Telecommunication 47

 In order to establish how to treat the newly introduced exception we should carefully
examine the response presented above. At a first glance, there seems to be no exception,
the response seems to be accordingly to the rule. Let us consider for example the last SMS
message:

 Code listing 1-21 One line of example output of SMS listing command

+CMGL: 10,"REC READ","+40726043403","","14/12/11,16:51:04+08"<CR><LF>
Blue screen<CR><LF>

 The line begins accordingly with the ‘+’ character followed by a string line. We can
observe that the first string line contains a text designating whether the SMS message was
read or not, then the phone number which sent the SMS message followed by the time
stamp. After the timestamp a sequence of CR LF characters is found followed by the
actual text message which end accordingly to the rule with the CR LF sequence.
Practically the only exception that needs to be treated is that an extra CR LF sequence is
present in the middle of the response line string.
 Following the same idea as the one in the previous laboratory work the state machine
is not mandatory to automatically detect this exception. The AT command parser can be
informed that it must treat this exception trough a global flag or a parameter.

 ASSIGNMENT 1: Modify the AT command parser to support the SMS listing
command. Add to the 1 per second print sequence the printing of the SMS messages
present in the SIM card under the following form:

 SMS message <i> - phone_number – SMS message text

 Code listing 1-22 SMS print example

SMS message 1 – 0722222222 – Some text message
SMS message 2 – 0733333333 – Some other thext message

 Please extract only the needed data from the SMS listing strings in order to print as
presented in the above example.

 The issue to be addressed in this laboratory work is to implement the command
responsible for the removal of a SMS message from its slot. This command does not
introduce any additional issues.

 ASSIGNMENT 2: Find the necessary information in the GSM Modem AT
command manual in order to implement a function, which is able to delete one message
from a given slot. The response from this command is known to respect the general form
of the AT command response language grammar.

 48 Laboratory work – SMS management

 The last command that will be addressed in this laboratory work is the one capable
of sending one SMS message. This command does not require special attention at its
response but it is slightly different when sending it. A very small state machine needs to
be implemented. An example of a communication involving sending an SMS message is
presented in the following code snippet.

 Code listing 1-23 SMS sending example

08.01.2016 09:52:56.328 [TX] - AT+CMGS="0722222222"<CR><LF>

08.01.2016 09:53:06.365 [RX] - <CR><LF>
>
08.01.2016 09:53:08.479 [TX] - some text to be sent
08.01.2016 09:53:14.825 [TX] - <SUB>
08.01.2016 09:53:14.857 [RX] - <CR><LF>
OK<CR><LF>

 The next step should be to analyze the above snippet. First of all the AT+CMGS
command is sent to the modem containing as a parameter the phone number the message
should be sent to, between quotation marks followed by the CR LF sequence. Until this
point no new aspect are being introduced. Further, the modem responses with a CR LF
sequence as expected but then the ‘>’ is sent. This character is practically a prompt and
after this the modem expects to receive the actual text message. In the example below one
can notice that after the prompt character the host PC sends the actual text message (in
the TX line). The actual text message ends with a special, newly introduced character,
which is the substitute (<SUB>) character with the HEX ASCII code of 0x1A. After the
SUB character was received the modem tries to send the SMS message to the number
given to the command as parameter. The response after this is perfectly “legal” which
respects the AT command language grammar without any exception.
 In order to implement the above presented sequence the receiving state machine
doesn’t need to be modified but a special send/receive state machine needs to be
implemented in order to support the first part of the command. The last response of the
command may be parsed with the already available AT command parser. A state chart on
how the algorithm could be implemented may be the one in Fig. 1-21.

Digital Telecommunication 49

Fig. 1-21 SMS Send state chart

 ASSIGNMENT 3: Implement a function capable of sending one SMS message to a
phone number. The message and the phone number should be given as parameters to the
function. Be careful as not to include the testing of this function in the infinite loop of the
program as it will send a lot of SMS messages thus draining the credit from the SIM card.
 HOME ASSIGNMENT: Please read the driver manual documentation and the
Doxygen documentation regarding the modules for working with the LCD and
TOUCHSCREEN.

Send CMGS
command with

phone number as
parameter

Has prompt character
arrived

Has timeout
occured

NO

NO

Error state

YES

Send the actual text
message

Send the substitute
character

Call GetCommandResponse
for classic AT Command

Response

Has answer arrived

SMS command
finished succesfully

YES

NO

 50 Laboratory work – Management interface using LCD and touchscreen

1.8 Laboratory work – Management interface using LCD and touchscreen

 All of the laboratory applications presented above have the debug console on
Docklight scripting as output. This laboratory work concentrates on integrating the
functionality available until now into a minimalistic graphical user interface. This can be
accomplished by using the LCD and the TOUCHSCREEN. The starting point of the LCD
and TOUCHSCREEN, coordinates (0, 0), is on the upper left corner of the display
considering the picture in Fig. 1-1 from paragraph 1.1.2 .
 For both the LCD and the TOUCHSCREEN a driver is available in the driver library.
Furthermore, all the initializations required are done in the BoardInit which should be
called the first function in main. Having this functional called the LCD is initialized and
cleared. The next function that is usually called in main is testLCD which draws the
Romanian National Flag and writes test messages. This call will not be needed anymore
thus an interface needs to be displayed.
 Information about the LCD, the prototypes, data structures and function calls may be
found in the driver manual and in the Doxygen documentation. The LCD driver module
supports the following functions:

- Clear screen
- Fill screen with a color
- Write a string on the screen with the given color and at the given coordinates using

a small or big font
- Put a pixel of a given color at the designated coordinates.

 Only minimal functions are supported by the library. Anything else needs to be
further implemented.
 Regarding the touchscreen, in the basic Keil project, the module is initialized and a
callback is instantiated which offers as parameters the values of the coordinates of the
pressed zone on the touchscreen. The callback function is called only when a touch is
detected. The callback function implementation currently available in the example project
is the following:

 Code listing 1-24 Touchscreen callback function implementation example

void TouchScreenCallBack(TouchResult* touchData)
{
 printf("touched X=%3d Y=%3d\n", touchData->X, touchData->Y);
}

 Furthermore, in order for this feature to work the touchscreen process function must
be called in the main infinite while loop which contains no blocking calls. An adapted
example from Code listing 1-13 which describes the suggestion above may be the one in
Code listing 1-25. The integration of the touch screen process function is bolded at the
end of the infinite loop.

Digital Telecommunication 51

 Code listing 1-25 Example of touchscreen process integration in main loop

.....

AT_COMMAND_DATA data_structure;
const char at_command_simple="AT\r\n"
const char at_command_csq = "AT+CSQ\r\n"
timer_software_handler_t my_timer_handler;
...

int main(void)
{
 ...
 uint32_t rssi_value_asu;
 uint32_t rssi_value_dbmw;
 ...
 while (1)
 {
 if (TIMER_SOFTWARE_interrupt_pending(my_timer_handler))
 {
 ExecuteCommand(at_command_csq);
 if (CommandResponseValid())
 {
 rssi_value_asu = ExtractData(&data_structure);
 rssi_value_dbmw = ConvertAsuToDbmw(rssi_value_asu);
 printf(...);
 }
 TIMER_SOFTWARE_clear_interrupt(my_timer_handler);
 }
 DRV_TOUCHSCREEN_Process();

 }
 ...
}

 ASSIGNMENT: Implement a graphical user interface that may offer a set of
functions.
 Regarding the way the interface should look, the students have the freedom to design
the graphical interface. However, some minimal aspects need to be considered. The
graphical interface should firstly contain the status of the modem which has the following
information: signal RSSI value in dBmW, state of registration, operator name. Another
part that needs to be present on the interface is a section where one SMS message will be
displayed. Another section of the screen must contain buttons to perform the following
functions:

- Previous SMS
- Next SMS
- Delete current SMS
- Send hardcoded SMS

 The buttons may be designed by drawing a simple rectangle with some text in the
middle. This is the suggested method to design the buttons mainly because it is easier to
identify them when using the touchscreen.

 52 Laboratory work – GPRS, TCPIP stack and socket management

 NOTE: Be careful on how often the interface is updated. Having a much too fast
update of the LCD may cause it to flicker. Usually the interface should be update only if
some of the values change.

1.9 Laboratory work – GPRS, TCPIP stack and socket management

 This laboratory work aims at studying much more advanced features of the GSM
modem. We focus during this laboratory work to learn how to connect to the internet via
GPRS and how to work with the integrated TCPIP stack. In order to be able to connect to
the Internet with the GSM modem, a data connection activated SIM card is needed along
with the necessary settings for an available APN provided by the network operator. It is
important to mention that there is no significant difference in connecting to the Internet
with a GSM modem or to connect to a VPN network provided by the operator. The only
difference is the APN along with its credentials. For this laboratory work we will consider
connecting to the Internet.
 Before beginning to discuss anything regarding the GPRS registration, the host must
ensure that the modem is properly registered to the GSM network which is mandatory,
thus the GPRS network is just an additional module of the GSM network. The GSM
network registration may be verified with the AT+CREG command as shown in Code
listing 1-4 and consulting the AT command documentation in order to identify the state
of the return result.
 For making things simple we will consider that the modem will work in a Single IP
non-transparent connection mode. The Single IP mode is configured using the
AT+CIPMUX command with the parameter 1, presented in Code listing 1-26, and the
non-transparent mode is made calling the command AT+CIPMODE with the parameter
0, presented in Code listing 1-27, all this according to the Modem AT command manual.

 Code listing 1-26 Configuring Single IP mode for socket communication

08.01.2016 16:39:33.485 [TX] - AT+CIPMUX=1<CR><LF>

08.01.2016 16:39:35.438 [RX] - <CR><LF>
OK<CR><LF>

 Code listing 1-27 Configuring non-transparent mode for socket communication

08.01.2016 16:39:33.485 [TX] - AT+CIPMODE=0<CR><LF>

08.01.2016 16:39:35.438 [RX] - <CR><LF>
OK<CR><LF>

 These command should be sent to the modem prior to initiating any other
communication regarding sockets and GPRS.
 The first step in connecting to the Internet is to get ourselves assured that the GSM
modem is registered in GPRS. This can be accomplished by interrogating the modem

Digital Telecommunication 53

using the AT+CGREG command. The result is similar to the AT+CREG command and
both the explanations and syntax may be found in the GSM Modem AT command manual.
Only after receiving a positive response similar to the one in Code listing 1-28 the
procedure may continue.

 Code listing 1-28 Interrogation result for a valid registration into the GPRS network

08.01.2016 16:39:33.485 [TX] - AT+CGREG?<CR><LF>

08.01.2016 16:39:35.438 [RX] - <CR><LF>
+CGREG: 0,1<CR><LF>
<CR><LF>
OK<CR><LF>

 If this response is not received then the modem needs to be manually attached to the
GPRS network with the help of the AT+CGATT command. A sample of this operating is
shown below:

 Code listing 1-29 Attaching to the GPRS network manually

08.01.2016 16:37:37.413 [TX] - AT+CGATT=1<CR><LF>

08.01.2016 16:37:40.430 [RX] - <CR><LF>
OK<CR><LF>

 After the attach command was given, the host must verify that the modem has
registered to the GPRS network using an interrogation such as Code listing 1-28. If even
after several of these procedures the modem did not successfully register to the GPRS
network, then a power cycle should be given to the modem and have the whole procedure
restarted.
 Immediately after the successful registration into the GPRS network the host must
configure the APN into the GSM modem using the AT+CSTT command. The syntax of
the command must be consulted in the AT command manual. An example of the
AT+CSTT command which configures the GSM modem’s APN to one provided by the
Vodafone operator is shown in.

 Code listing 1-30 Configuring the APN

08.01.2016 16:51:52.258 [TX] - at+cstt="live.vodafone.com","",""<CR><LF>

08.01.2016 16:51:59.415 [RX] - <CR><LF>
OK<CR><LF>

 54 Laboratory work – GPRS, TCPIP stack and socket management

 After the APN was configured into the GSM modem, the actual connection needs to
be brought up. This is practically easy and only requires the calling of AT+CIICR
command without any parameters. Such a procedure is presented in Code listing 1-31.

 Code listing 1-31 Bringing up the GPRS connection

08.01.2016 16:52:06.516 [TX] - at+ciicr<CR><LF>

08.01.2016 16:52:09.629 [RX] - <CR><LF>
OK<CR><LF>

 Finally, after the connection was successful, the TCPIP stack needs to be activated.
This is done by using the AT+CIFSR command, with no arguments. This command also
has the role to return the IP address given by the operator.

 Code listing 1-32 Activation of TCPIP stack

08.01.2016 16:52:15.406 [TX] - at+cifsr<CR><LF>

08.01.2016 16:52:17.218 [RX] - <CR><LF>
10.33.249.131<CR><LF>

 An example of how the TCPIP stack gets activated is displayed in Code listing 1-32.
Taking a look at the code snippet above, an extremely important observation needs to be
made. The response of the command not only that it does not contain the ‘+’ character at
the beginning of the response line but also does not contain the OK/ERROR sequence at
the end of the command.
 The first AT command language exception: the lack of the ‘+’ character, was
encountered before in laboratory work 1.6 in the case of AT+GSN, AT+GMI and
AT+GMR commands.
 The second AT command language exception, which was not encountered before, is
that the AT command does not conclude with the OK/ERROR statements. The AT
commands parse needs to be modified, again, in order to support the newly added
exceptions. Furthermore, the AT command parses needs to support 2 exceptions at once,
in order to be able to proper validate end extract the response to AT+CIFSR command.
Even in this case, it is recommended that the finite state machine should be notified about
the existence of these exceptions. The finite state machine should not automatically detect
these situations.
 After the IP address was successfully obtained, then, the host can be sure by the fact
that the GSM modem is connected to the network specified by the APN, in our case, the
Internet.

 ASSIGNMENT 1: Implement a function, which connects the Modem to the Internet
and brings up the GSM stack. Modify the AT command parses in order to support the
newly introduced exceptions. Adapt the graphical user interfaces implemented in the
previous laboratory work in order to display the obtained IP in the modem status section.

Digital Telecommunication 55

 In the moment the GSM modem is connected to the Internet (or another VPN
network) TCP or UDP clients and servers may be configured. The GSM modem supports
various modes of operation. While keeping things simple we will consider the situation
where the modem will be configured to be a TCP client and make a simple transaction to
a remote host. The chosen transaction is a simple communication to an email server.
 Same as working with network sockets on a PC the socket firstly needs to be opened.
We will open a socket to a public Google SMTP server. The command capable in opening
a socket is AT+CIPSTART, which according to the documentation, accepts as
parameters: the socket type (TCP or UDP), the remote host IP address and the remote host
port. An example of opening a remote connection to the Google SMTP server can be
found in the following code snippet:

 Code listing 1-33 Opening a TCP socket

08.01.2016 17:02:53.886 [TX] - AT+CIPSTART="TCP","64.233.189.26","25"<CR><LF>

08.01.2016 17:03:14.921 [RX] - <CR><LF>
OK<CR><LF>
<CR><LF>
CONNECT OK<CR><LF>

 An analysis on the previous response needs to be made. The response until the line
OK<CR><LF> is perfectly correct according to the grammar presented in the previous
laboratory works. However, the following lines are not. Another simple finite state
machine needs to be implemented in order to validate the first part of the response. The
new finite state machine needs only to identify the sequence following the “legal” answer,
more exactly it needs to detect a “CONECT OK” statement. The “OK” statement of the
AT+CIPSTART result states that the command was executed correctly. However it does
not state that the socket was opened successfully. The fact that the modem was able to
open the socket is signaled via the last line of the response presented in Code listing 1-33.
Be aware that according to the documentation “CONNECT OK” is not the only possible
response. Study the command syntax in order to find out all the possible situations! In the
next figure a state diagram of how an open socket function should be implemented is
presented:

 56 Laboratory work – GPRS, TCPIP stack and socket management

 Fig. 1-22 Socket opening state diagram

 It is important to mention that in non-transparent, single IP connection, after a socket
is opened, any data received from the socket is sent in an unattended manner by the
modem. A special and simple receiving state machine may need to be implemented in
order to read this data. This state machine is practically a simple read from the UART
buffer of the microcontroller when needed. Giving the fact that in the previous example
we have opened a socket to an email server after the “CONNECT OK” statement the
modem will send the greeting message received from the SMTP server immediately after
the socket was opened. In conclusion, the complete communication log in this situation is
the following:

Send the AT+CIPSTART
command

Call GetCommandResponse

Has a valid response arrived
within the TIMEOUT

NO

Exit with error

Wait for the
CONNECT OK or
other connect
statement

Has connect answer
arrived with TIMEOUT

NO

Is socket opened

YES

YES

NO

Return socket
opened succesfully

YES

Digital Telecommunication 57

 Code listing 1-34 Full received data on socket open command

08.01.2016 17:02:53.886 [TX] - AT+CIPSTART="TCP","64.233.189.26","25"<CR><LF>

08.01.2016 17:03:14.921 [RX] - <CR><LF>
OK<CR><LF>
<CR><LF>
CONNECT OK<CR><LF>
220 mx.google.com ESMTP i19si28127789wmd.45 - gsmtp<CR><LF>

 The difference between Code listing 1-33 and Code listing 1-34 is that after the
“CONNECT OK” statement the SMTP server greeting received from the email server is
sent by the modem unattended. A simple read from the microcontroller’s UART interface
after a few moments may obtain this message if needed.
 The next aspect that will be discussed in this laboratory work is represented by the
procedure for sending data over an opened socket. This procedure is practically identical
to the procedure of sending an SMS message presented in laboratory work 1.7 . Such a
procedure is displayed in the following example where we send an extended hello
message (EHLO localhost) to the remote email SMTP server:

 Code listing 1-35 Sending text data over a socket

08.01.2016 17:03:39.910 [TX] - AT+CIPSEND<CR><LF>

08.01.2016 17:03:43.838 [RX] - <CR><LF>
>
08.01.2016 17:03:45.480 [TX] - EHLO localhost<CR><LF>

08.01.2016 17:03:52.215 [TX] - <SUB>
08.01.2016 17:03:53.108 [RX] - <CR><LF>
SEND OK<CR><LF>

 In Code listing 1-35 we can find a sequence of how text data can be sent over an
opened socket. The first line represents the calling of the command responsible for
sending data over the socket (AT+CIPSEND). Similar to the situation when sending an
SMS message, after the send command the host needs to wait for the ‘>’ prompt character
(and the preceding CR LF characters). After the prompt character is received the actual
data to be sent over the socket needs to be inputted. The finishing of the data to be sent
again marked by the Substitute (SUB) character with 0x1A as the HEX ASCII value.
Immediately after the sub character is received by the modem it begins to transmit the
data over the socket. After the data was sent over the socket the modem responds (similar
to the response in the case of sending SMS messages) with a CR LF sequence followed
by the string “SEND OK” again with a CR LF ending.
 Having this situation analyzed we can conclude that another exception has been
found. The exception, in respect to the response of the SMS message sent command, is
that in a successful situation “OK” is not the string being return but “SEND OK” replaces
it.

 58 Laboratory work – GPRS, TCPIP stack and socket management

 After the successful sent of the data over the socket we should expect the answer
from the remote host which should arrive shortly. After a user defined timeout we should
read the microcontroller’s serial interface in order to collect the remote host’s answer.
Such an answer followed after the send ok statement may be found in the next example:

 Code listing 1-36 Sending text data over a socket with received answer from remote host

08.01.2016 17:03:39.910 [TX] - AT+CIPSEND<CR><LF>

08.01.2016 17:03:43.838 [RX] - <CR><LF>
>
08.01.2016 17:03:45.480 [TX] - EHLO localhost<CR><LF>

08.01.2016 17:03:52.215 [TX] - <SUB>
08.01.2016 17:03:53.108 [RX] - <CR><LF>
SEND OK<CR><LF>
250-mx.google.com at your service, [213.233.84.80]<CR><LF>
250-SIZE 35882577<CR><LF>
250-8BITMIME<CR><LF>
250-STARTTLS<CR><LF>
250-ENHANCEDSTATUSCODES<CR><LF>
250-PIPELINING<CR><LF>
250-CHUNKING<CR><LF>
250 SMTPUTF8<CR><LF>

 The state chart presented for in the SMS sending algorithm in Fig. 1-21 may be
adapted in order to support and describe the algorithm for making a simple transaction
over an opened socket. By transaction we mean a successfully transmit of a request to the
remote host and the reception of the response. Such a state chart describing the transaction
algorithm may be found in the next diagram:

Digital Telecommunication 59

Fig. 1-23 Socket transaction state chart

 Only one remark needs to be made, that after the work with the socket is finished,
the host microcontroller should close the TCP socket by using the AT+CIPCLOSE
command.
 ASSIGNMENT: As described above, implement a transaction to a mail server and
extract the hello message. Print the collected message either on debug console or on the
LCD. In order to accomplish this, implement the necessary algorithms presented above
and modify the AT command parser to support the newly introduced exceptions.

Send AT+CIPSEND
command

Has prompt character
arrived

Has timeout
occured

NO

NO

Error state

YES

Send the actual text
message

Send the substitute
character

Call modified version of
GetCommand to wait for
reception of “SEND OK”

Has answer arrived

YES

NO

Socket send
command finished

succesfully

Wait a predefined
period of time for

remote host
response arrival

Read data from
microcontroller’s
UART interface

 60 Driver manual

1.10 Driver manual

1.10.1 Introduction

1.10.1.1 General specifications
 This document contains a description of the drivers that are given to the 4th year
students attending to the Digital Telecommunications (“Telecomunicatii Digitale”)
laboratory in DSPLabs.
 The main platform is a LPC1788 MOD-LCD 4.3 board from Olimex which is
connected to a proprietary board with various communication modules like GSM, GPRS,
GPS, WIFI, Ethernet TCP/IP, Bluetooth, and XBEE.
 This document is also accompanied by the Doxygen documentation of the code of
the drivers hosted at http://dsplabs.cs.upt.ro/~valys/td/driverdoc/index.html. Almost all
the functions and the data types or variables are documented in Doxygen but not all of
them are needed by the programmer. The functions that should not be of an interest to the
programmer are marked with Private. It is highly recommended that the programmer
doesn’t call any of these private functions.
 This document is structured as following:

 Introduction – presents the general specifications of the document and of
the drivers which are related to DRV_GENERAL driver.

 Drivers – presents the description of the drivers
 Utilities – presents various structures and modules that help the

development of applications within the laboratory and facilitate teaching
and understanding.

 All of the driver functions are named by the following rule: DRV, following by the
name of the module, followed by the name of the function,all separated by underscore.
Example: DRV_LCD_Configure – the function that configures the LCD module.

1.10.1.2 DRV_GENERAL
 The module called DRV_GENERAL is not an actual driver. It contains general
definitions and functions that are needed by the rest of the drivers.
 One of the more important aspects is that it defines the STATUS enum which is used
by most of the driver functions to return the status of the corresponding function call. The
Doxygen documentation contains the actual description of this enum type.
 This module also defines some general configuration for the rest of the drivers like
the size of the buffers for each UART modules. It also defines some general data types
like Boolean and some arithmetic macros: MIN, MAX, and ABS.
 This module defines some functions that are used by the UART driver to calculate
the baud rate divisors for any given baud rate. The calculations are made using the
peripheral clock that clocks the UART modules. This module also contains the definitions
for the size of all the buffers used by all of the other drivers.

Digital Telecommunication 61

1.10.2 SRAM Memory Driver

 The LPC1788 MOD-LCD 4.3 board contains a 32 MB SRAM memory connected to
the LPC1788 microcontroller’s memory bus. The start address of the memory is
0xA0000000 defined by the SDRAM_BASE_ADDR macro. The programmer only has
to configure the external memory controller of the microcontroller. The rest of the
operations (read/write) are transparent for the programmer.
 The only and most important function of the driver (that is exported to the
programmer) is DRV_SDRAM_Init() which has to be called before using the external
SDRAM memory (anything inside the address space 0xA0000000 – 0xA2000000).

1.10.3 LCD Driver

 The LPC1788 MOD-LCD 4.3 board is equipped with a RGB LCD with touchscreen.
This chapter describes only the driver responsible for the LCD, the touchscreen’s driver
being presented in the following chapter.
 The LCD is landscape orientated with a resolution of 480x272 pixels. The driver
exports the following methods (the complete description of these methods and their
parameters and return value can be found in the Doxygen documentation of this driver
library):

1. DRV_LCD_Init – This function has to be called prior to using any of the LCD related
methods. This function initializes the LCD dedicated module of the microcontroller and
also configures and powers on the LCD. Only after the call of this function the LCD may
be used by the programmer. The function doesn’t need any parameters.
2. DRV_LCD_PutPixel – This function is used to draw a pixel on the LCD at the
specified location (by x and y coordinates). The color is defined by RGB coordinates. The
full specification of this method may be found on the Doxygen documentation of the
driver library.
3. DRV_LCD_TestFillColor – This function fills the whole LCD with a given color
specified by RGB coordination.
4. DRV_LCD_ClrScr – This function clears the content of the LCD coloring its
background in black.
5. DRV_LCD_Puts – This function draw a user string on the LCD at a given position,
of the specified color. There are 2 fonts available in the driver to write text on the LCD: a
small font and a large font. The desired font can be selected via a parameter of this
function.
 One important aspect of this library is that it doesn’t work with special characters
when writing text. It also doesn’t do anything related to spacing. The user is responsible
with the positioning of the text lines (whether these text lines overlap or not).

 62 Driver manual

1.10.4 Touchscreen driver

Prior to using any method of the touchscreen driver, the DRV_TOUCHSCREEN_Init()
function has to be called in order to initialize the touchscreen hardware and software
components.
 The driver of the touchscreen has 2 operating modes: a polling mode and a callback
mode.
 In the polling working mode, the user has to check whether the touchscreen has been
touched and to acquire the coordinates of the touched position. This is done by calling
TouchGet function which returns a Boolean value specifying whether a touch event has
occurred. If such a touch event is present then in a non-null parameter the x and y
coordinates are returned.
 In the callback working mode, the driver itself calls a specified user function where
it announces a touch event, the (x, y) location. In order to use this working mode,
immediately after calling DRV_TOUCHSCREEN_Init() the user has to call
DRV_TOUCHSCREEN_SetTouchCallback. This function takes a pointer to a function as
an argument. This function will be called when a touch event occurs. The prototype of the
function that this method accepts as parameters is the following:

 Code listing 1-37 Prototype of touch screen callback function

void TouchScreenCallBack(TouchResult* touchData).

 Also, in order to use this operation mode, in the programs main forever loop, the user
has to include a call to DRV_TOUCHSCREEN_Process().
 Let’s have the following example:

 Code listing 1-38 Touchscreen driver usage with callback

#include <DRV/drv_general.h>
#include <DRV/drv_touchscreen.h>

void MyTouchScreenCallBack(TouchResult* tData)
{
 printf("Touch event at: X=%3d Y=%3d\n", tData->X, tData->Y);
}

void main(void)
{
 // user code
 DRV_TOUCHSCREEN_Init(); // initialize the touchscreen
 // set the touchscreen callback
 DRV_TOUCHSCREEN_SetTouchCallback(MyTouchScreenCallBack);
 // user code
 while(1)
 {
 // user code
 DRV_TOUCHSCREEN_Process();
 // user code
 }
 // user code
}

Digital Telecommunication 63

 In the above example we initiate the touchscreen driver, configure it to use callback
working mode and instantiate a callback for the touch event. In this situation whether a
touch event occurs, the driver calls the user function MyTouchScreenCallBack where the
user can process this event, in our case, the user prints the touched coordinates.

1.10.5 LED Driver

 The laboratory board is equipped with 4 LEDs that are directly connected to the
processor of the LPC1788 MOD-LCD 4.3 board on P0_0, P0_1, P0_10 and P0_11 of port
0. The purpose of this driver is to offer the programmer a way to easily interact with the
LEDs on the board without knowing details about connections or port configurations.
These 4 LEDs are identified by the LED enumeration type (check the doxygen
documentation). This enumeration type has 4 possible values (LED_1, LED_2, LED_3,
LED_4)
 Prior to using the LEDs the programmer has to call the method DRV_LED_Init() in
order to initialize both the driver and the GPIO system.
 There are 3 methods that the programmer may use in order to interact with the leds.
- DRV_LED_Off – which takes the specified LED as an argument (defined by the LED
enumeration type). This method turns off the led.
- DRV_LED_On – which takes the specified LED as an argument (defined by the LED
enumeration type). This method turns on the LED.
- DRV_LED_Toggle – which takes the specified LED as an argument (defined by the
LED enumeration type). This method toggles the LED: if the LED is off then it is turned
back on and if the LED is on then a call of this function will turn off the specified LED).

1.10.6 UART Driver

 The processor of the LPC1788 MOD-LCD 4.3 board has 5 UART modules
designated as UART_0, UART_1, UART_2, UART_3, UART_4. This driver offers a
unique way in accessing all of the 5 UART modules of the microcontroller by providing
a parameters to each of the driver functions that identifies the UART module.
 An important aspect of the driver is that it has an internal error reporting system
similar to the errno variable in POSIX. After a call of every function provided by the
driver, the programmer can check the type of the error (if present/needed) by using the
DRV_UART_GetErrno function. The error types are found in the UART_ERROR_TYPE
enumeration type.
 The UART driver can be initialized using the DRV_UART_Configure (the full
description of this method can be found in the Doxygen documentation). The programmer
can specify the baud rate (9600, 57600, 115200, etc.…) the parity, the number of bits per
character, the number of stop bits, the operating mode (which will be discussed later) and
a read timeout value in milliseconds.

 64 Driver manual

 The UART driver has 2 operating modes: a blocking mode and a buffered mode. The
blocking mode is the simplest way to use the UART modules via this driver. In this mode
the processor waits indefinitely for every operation to finish. This is why this mode is
called blocking (it blocks the execution of the processor until the current operation is
complete). In order to configure the driver to work in this mode (blocking mode), the
6th parameters of DRV_UART_Configure function has to be false. Let’s take the
following example:

 Code listing 1-39 UART driver mode usage in a blocking manner

#include <DRV/drv_general.h>
#include <DRV/drv_uart.h>
void main(void)
{
… // user code
 /*
 We configure and initialize the UART module UART_2 to use 8 bits/character, with
no parity at 9600 bps and to work in blocking mode
 */
 DRV_UART_Configure(UART_2, UART_CHARACTER_LENGTH_8, 9600, UART_PARITY_NO_PARITY,
1, false, 0);
 // here we may check the errno value (optional)
 If (DRV_UART_GetErrno(UART_2) != UART_ERROR_NO_ERROR)
 {
 // do something in case of error
 }
 uint8_t ch;
 while(1)
 {
 … // user code 1
 // we read a character from UART_2 and store it in ch
 DRV_UART_GetCharBlocking(UART_2, &ch);

 // we send the previously receive character
 DRV_UART_SendCharBlocking(UART_2, ch);
 … // user code 2

 }
}

 In the previous example we configure the module UART_2 to work in blocking mode
and implement a serial echo (the receive character is sent back to the transmitter). It is
important to mention that the call to function DRV_UART_GetCharBlocking will freeze
the execution of the forever loop until the reception of a character. Also the call
DRV_UART_SendCharBlocking will freeze the execution of the forever loop until the
character is transmitted. This will cause the user code designated as 1 and the user code
designated as 2 to be actually executed only if a character is received. The driver also
offers a way to send a whole buffer over a UART module in blocking mode this also
freezing the user code execution until the whole buffer is transmitted.

Digital Telecommunication 65

 The other operating mode of this driver is the buffered mode. In this mode the
reception and the transmission is done using the interrupt system and a collection of
buffers. In this manner the execution of the processor is not blocked until the
reception/transmission operations are finished. The user only “schedules” a transmission
or reception operation and the actual process is done in the background using the interrupt
system. This can be seen similar to threading in a way. This operating mode is very
complex offering a lot of flexibility to the user. A programmer can not only read/write to
the UART port, but it can also check the amount of available data stored in the internal
buffers and flush these internal buffers.
 Another important aspect is that this driver also offers a callback system that the
programmer can use if he or she wants to be announced when new data is ready or when
data has been transmitted. The callback system is similar to the one in the touchscreen
driver. In order for the UART driver callback system to function the user programmer has
to include a call to DRV_UART_Process() within the programs forever loop.
 In the next example we use the LEDs to demonstrate the usage of the buffered
operating mode of the UART driver with callbacks. The program has the following
behavior: inside the forever loop LED_1 is toggled; at the reception of character “a”
LED_2 is toggled and at the reception of character “b” LED_3 is toggled.

 66 Driver manual

 Code listing 1-40 UART driver mode usage in a non-blocking manner using callbacks

#include <DRV/drv_general.h>
#include <DRV/drv_uart.h>
void main(void)
{
 // led configurations and other initialization code
 /*
 We configure and initialize the UART module UART_2 to use 8 bits/character, with
no parity at 9600 bps and to work in buffered mode.
 */
 DRV_UART_Configure(UART_2, UART_CHARACTER_LENGTH_8, 9600, UART_PARITY_NO_PARITY,
1, true, 0);
 DRV_UART_SetRxCallback(UART_2, MyCustomCallback);
 while(1) // program’s main forever loop
 {
 // user code 1
 DRV_LED_Toggle(LED_1);
 DRV_UART_Process();
 // user code 2
 }
}

void MyCustomCallback(UART uart, uint32_t size)
{
 uint8_t ch;
 // process all the pending characters
 while (DRV_UART_BytesAvailable(UART_2) > 0)
 {
 // read a character and check the status of the call (status check is optional)
 if (DRV_UART_ReadByte(UART_2, &ch) == OK)
 {
 switch (ch)
 {
 case ‘a’:
 {
 DRV_LED_Toggle(LED_2);
 break;
 }
 case ‘b’:
 {
 DRV_LED_Toggle(LED_3);
 }
 }
 }
}
}

 In the main function of this example, firstly, we initialize everything we need,
especially UART_2 module. We configure the UART driver to use UART_2 module in
buffered mode by calling DRV_UART_Configure. With the next function call we tell the
driver that we want to use a custom callback when a character is received. The main loop
of the program calls the mandatory function of the driver DRV_UART_Process(), the
method to toggle LED_1 and other user code.
 In this situation, the microcontroller will be busy running the forever loop without
any blocking situations thus processing will not be significantly delayed. The behavior of
the loop can be observed using a scope on LED_1.

Digital Telecommunication 67

 Every time a character is received, the function MyCustomCallback will be called by
the driver, interrupting the forever loop in order to let the user process this event. In our
example we read all the available characters in the buffer and for each character we toggle
LED_2 if the character is “a”, toggle LED_3 if the character is “b” and ignore the rest.
 This operating mode has the advantage that the programmer doesn’t block the
processor for unnecessary idle waits, for example when waiting for a character to arrive.

1.10.7 Driver utilities

1.10.7.1 Software timer (TIMER_SOFTWARE)

 This module is a software implemented timer. The main advantages are that the user
can define as many timers as needed, the only limitation being the memory. The software
timer module is implemented using a hardware timer module of the microcontroller. The
granularity of the software timer is 1 ms. Prior to using this feature, the function
TIMER_SOFTWARE_init_system() has to be called. The user can specify the number of
maximum timer software to be allocated at compile time by modifying the
MAX_NR_TIMER macro.
 Each software timer has 4 operating modes:
• MODE_0 – The software timer counts to the value given by period. When the counter
is equal to period, the timer stops and generates an event.
• MODE_1 – The software timer counts to the value given by period. When the counter
is equal to period the timer generates an event, resets the counter and restarts.
• MODE_2 - The software timer counts to the value given by period. When the counter
is equal to period the timer generates an event and continues running
• MODE_3 – This operating mode is a free run mode. The counter just starts from 0
and keeps counting without generating any events.

 The programmer may use this timer with event generation via a callback system or
using polling methods via dedicated methods for checking pending events. Before using
a timer, the programmers needs to acquire such a timer by calling
TIMER_SOFTWARE_request_timer which returns a descriptor for the newly allocated
timer. A timer may be released after the programmer finishes using it, by calling
TIMER_SOFTWARE_release_timer. After a timer has been acquired by the programmer
it has to be configured by specifying its operating mode and its counting period.
 The library also offers a simple wait function which blocks the code execution for an
amount of time given as argument.
 The next example (led blinking) describes a simple usage of a software timer with
event generation via callbacks:

 68 Driver manual

 Code listing 1-41 Timer software usage example with callbacks

#include <Utils/timer_software_init.h>
#include <Utils/timer_software.h>
#include <DRV/drv_led.h>

void main(void)
{
 //user code
 DRV_LED_Init();
 TIMER_SOFTWARE_init_system(); // initialize the software timer library
 timer_software_handler_t handler; // declare a software timer
handler(descriptor)
 handler = TIMER_SOFTWARE_request_timer(); // request a timer
 if (handler < 0) // check if the request was successful
 {
 // the system could not offer a software timer
 }
/* configure the requested timer to run in MODE_1 (reset and restart at match)
with a period of 100 ms
*/
 TIMER_SOFTWARE_configure_timer(handler, MODE_1, 100, true);
 // set a callback for the requested timer
 TIMER_SOFTWARE_set_callback(handler, MyTimerCallback);
 TIMER_SOFTWARE_start_timer(handler);
 while(1)
 {
 // user code
 }
}

void MyTimerCallback(timer_software_handler_t handler)
{
 DRV_LED_Toggle(LED_1);
}

 In the previous example we can use the software timer to blink a LED with a period
of 100 ms. .The first thing to do in the main function of the program is to initialize both
the LEDs and the software timer system. After these initializations we declare a handler
for the software timer we want to use and then, we request the timer. If the system could
not offer a software timer (mainly because there are not software timers available) the
value of the handler is negative. On the successful request of a system timer we configure
the timer to work in mode 1 with a period of 100 ms. The next step is to instantiate a
callback and finally we can start the timer. Our callback function (MyTimerCallback) will
be executed in interrupt execution context, once every 100 ms where we can easily blink
the LED. The user code is once again not affected.
 There is also another way the programmer may use the software timer: without using
a callback system thus using a polling method. Such a method is described in the following
example which is similar to the previous one. The program also blinks the following LED
at a period of 100 ms but without using callbacks and using event polling instead.

Digital Telecommunication 69

 Code listing 1-42 Timer software usage example in a polling manner

#include <Utils/timer_software_init.h>
#include <Utils/timer_software.h>
#include <DRV/drv_led.h>

void main(void)
{
 //user code
 DRV_LED_Init();
 TIMER_SOFTWARE_init_system(); // initialize the software timer library
 timer_software_handler_t handler; // declare a software timer handler
 handler = TIMER_SOFTWARE_request_timer(); // request a timer
 if (handler < 0) // check if the request was successful
 {
 // the system could not offer a software timer
 }
/* configure the requested timer to run in MODE_1 (reset and restart at match)
with a period of 100 ms
*/
 TIMER_SOFTWARE_configure_timer(handler, MODE_1, 100, true);
 // set a callback for the requested timer
 TIMER_SOFTWARE_start_timer(handler);
 while(1)
 {
 // user code
 if (TIMER_SOFTWARE_interrupt_pending(handler) != 0)
 {
 DRV_LED_Toggle(LED_1);
 TIMER_SOFTWARE_clear_interrupt(handler);
 }
 // user code
 }
}

 The difference between this example and the previous one is that in the latter we do
not use a callback. Inside the forever loop of the program we check if and interrupt (event)
has occurred. If so then we toggle the LED and clear the interrupt flag. In this situation
this code is not executed in interrupt context.

1.10.7.2 Retarget debug system

 The retarget debug system provides a simple way to send debug message via the
UART_0 module of the microcontroller using the standard input/output (stdio.h). In this
way the programmer may use functions such as printf, sendchar, scanf, getchar, etc. in
order to debug the applications. It is not recommender to relay on these standard function
in a normal operation of microcontroller applications mainly because these functions have
extremely large, time consuming and unpredictable code. In order to use the retarget
debug system the programmer has to call the initRetargetDebugSystem() method and
connect the UART_0 port of the microcontroller to a computer terminal. A usage example
can be found below:

 70 Frequently used Modem AT commands

 Code listing 1-43 Initialization of the retarget debug system for printf

#include <stdio.h>
#include <retarget.h>

void main(void)
{
 initRetargetDebugSystem();
 printf (“Hello world”);
 while(1);
}

1.11 Frequently used Modem AT commands

1.11.1 General specifications

 The following chapters will summarize the most frequently used AT commands. For
each command a description will be provided as well as all the available forms of the
command: test command, read command, write command, execution command
depending on which forms are supported.
 For each form of the command a description will be provided along with the request
and response syntax. Also all the necessary parameters for a command will be described
but parameters that do not present interest for the laboratory works will be omitted.
 Giving the fact that almost all commands have a test command form which usually
is not used, the explanations for this form will be omitted. Check the AT Command
documentation [11] for details about this form, if necessary
 Only the actual command requests and responses will be detailed in this section, the
actual AT protocol encapsulation will omitted.

1.11.2 Simple AT Command

Description: Simple AT command used only for protocol synchronization. Has no actual
effect on the GSM modem

Available command type forms: Execution Command

Execution command

 Syntax:

 Request: AT
 Response: OK

 Description: No description available.

Digital Telecommunication 71

1.11.3 AT+CREG

Description: Command is used to obtain the registration status by the GSM Modem into
the GSM network. The command has 2 response forms: a short response giving only its
form number and the actual registration status and a long form giving its form number,
the actual registration, the cell ID and the location ID.

Available command type forms: Read Command, Write Command

Read Command: short version

 Syntax:

 Request: AT+CREG?
 Response: +CREG: <n>, <stat>
Description: The read command returns 2 important parameters: the first parameter
is the form of the command. This parameter has the value equal to 1, if this short
form is used or 2, if the long form is used. The second parameter <stat> contains a
code representing the actual registration in the network of the GSM Modem. The
<stat> parameter has the following values:

<stat> value description
0 Modem is not registered in

the network and is not
searching for a network

1 Modem is registered to home
network

2 Modem is not registered but it
is currently searching for a
network

3 Modem registration into the
network was denied

4 Unknown modem registration
state

5 Modem is registered to
roaming network

 Example:
 Request: AT+CREG?
 Response: +CREG: 1,2

 72 Frequently used Modem AT commands

Read Command: long version

 Syntax:
 Request: AT+CREG?
 Response: +CREG: <n>, <stat>, <location_id>, <cell_id>
Description: The read command returns 4 important parameters. The first and
second parameter were presented in the short form description. The third and fourth
parameter are presented as 4 digit hexadecimal numbers, which represent the code of
the location and the code of the cell.

 Example:
 Request: AT+CREG?
 Response: +CREG: 1,2,4A5B,083A

Write Command:
 Syntax:

 Request: AT+CREG=<n>
 Response: OK
Description: The write command accepts only one parameter having the same values
and meaning as parameter <n> presented above. Writing this parameter selects which
of the 2 read command version should be returned by the modem. Setting the <n>
parameter to 1 will select the short version of the read command. Setting the <n>
parameter to 2 will select the long version of the read command.

 Example:

 Request: AT+CREG=2
 Response: OK

1.11.4 AT+CSQ

Description: This command is used to return the current value of the signal strength
in ASU.

Available command type forms: Execution Command

Execution Command:
 Syntax:

 Request: AT+CSQ
 Response: +CSQ: <rssi>,<ber>
Description: The execution command form of this command is the only one
available and returns two important parameters: the RSSI (received signal strength
indicator) value and the BER (bit error rate) value. The RSSI can be a value of 0 to
31, if a valid reading was made or a value of 99, if an unknown value was acquired.

Digital Telecommunication 73

 The measuring unit for this value is ASU. In order to transform from ASU
values to dBmW values the following formula may be used:

2 ∙ 113
The second parameter is the bit error rate value measured along with the RSSI value.

 Example:
 Request: AT+CSQ
 Response: +CSQ: 27,0

1.11.5 AT+COPS

Description: This command is used to read information regarding the GSM network
operator. This command in slightly complex, but only the most used syntaxes (Read
Command) and parameters will be presented here. For more information check the
SIM900 AT Command Manual

Available command type forms: Read Command, Write Command

Read Command:

 Syntax:
 Request: AT+COPS?
 Response: +COPS: <mode>,<format>,<op_long>,<op_short>
Description: The read command syntax is used to interrogate the GSM modem about
information regarding the network operator. This command returns a valid response
only if the GSM modem has registered to the network. It should be used only if a
positive registration response is given by AT+CREG command. The return value
contains 3 parameters: <mode>, <format> and <op_short> are numerical parameters
and <op_long> is a string parameter. The string parameter contains the name of the
network operator. The rest of the parameters will not be discussed here.

 Example:
 Request: AT+COPS?
 Response: +COPS: 0,0,”Vodafone RO”,2

 74 Frequently used Modem AT commands

1.11.6 AT+COPN

Description: This command is used to read the list of operators known by the GSM
modem. This command retrieves a list of the supported operators. Even if an operator
is not supported by the GSM modem it will still register with it if possible, but it will
not display its name.

Available command type forms: Execution Command

Execution Command:

 Syntax:
 Request: AT+COPN
 Response:
 +COPN: <numeric1>,<alpha1> … +COPN: <numericn>,<alphan>

Description: The execution command returns the actual list of supported operators
from the GSM modem’s internal memory. There are 2 parameters for each entry of
the list. The <numerici> parameter contains the network operator identification string
which is practically a hexadecimal number and the <alphai> parameter contains the
network operator’s name.

 Example:
 Request: AT+COPN
 Response:
 +COPN: “001010”,”Test PA128-PA4”
 +COPN: “00101”,”Test PA128-PA4”
 +COPN: “20201”,”GR COSMOTE”
 +COPN: “20205”,”Vodafone GR”
 +COPN: “310160”,”T-Mobile”
 +COPN: “31016”,”T-Mobile”
 …

Digital Telecommunication 75

1.11.7 AT+GSN

Description: This command is used to retrieve the IMEI (International Mobile
Equipment Identifier) number of the GSM Modem.

Available command type forms: Execution Command

Execution Command:

 Syntax:
 Request: AT+GSN
 Response: <sn>

 Example:
 Request: AT+GSN
 Response: 356938035643809

1.11.8 AT+GMI

Description: This command is used to retrieve the Manufacturer Identity from the
GSM Modem.

Available command type forms: Execution Command

Execution Command:

 Syntax:
 Request: AT+GMI
 Response: <manufacturer_identity>

 Example:
 Request: AT+GMI
 Response: SIMCOM_Ltd

 76 Frequently used Modem AT commands

1.11.9 AT+GMR

Description: This command is used to retrieve the software revision number of the
GSM Modem.

Available command type forms: Execution Command

Execution Command:

 Syntax:
 Request: AT+GMR
 Response: Revision: <revision>

 Example:
 Request: AT+GMI
 Response: Revision: 123456V1

1.11.10 AT+CMGF

Description: This command is used to manage the way the modem should tread SMS
messages. There are 2 ways SMS messages can be interpreted: in text mode as it is
usually done and in PDU mode where SMS message do not contain text data but raw
bytes.

Available command type forms: Read Command, Write Command

Read Command:

 Syntax:
 Request: AT+CMGF?
 Response: +CMGF: <mode>

Description: The read command retrieves the current setting available in the GSM
modem on how it should interpret SMS message. The mode may be a value of 0 is
PDU mode is to be used or 1 if interpretation is made for text mode

 Example:
 Request: AT+CMGF?
 Response: Revision: +CMGF: 1

Digital Telecommunication 77

Write Command:

 Syntax:
 Request: AT+CMGF=<mode>
 Response: OK/ERROR

Description: The write command is used to set the mode the modem should use to
interpret SMS messages. The <mode> parameter has the same meaning as in the read
command: value of 0 for PDU mode and value of 1 for text mode

Example:

 Request: AT+CMGF=1
 Response: Revision: OK

1.11.11 AT+CMGL

Description: This command is used to list the SMS messages that are stored in the
SIM card memory.

Available command type forms: Execution Command, Write Command

Write Command:

 Syntax:
 Request: AT+CMGL=<stat>,[<mode>]
 Response:
+CMGL:<index>,<stat>,<oa/da>[,<alpha>][,<scts>][,<tooa/toda>,<length>]<CR>
<LF><data><CR><LF>

Description: The write command form for this command, in contrast with the other
write commands, does not write any parameters for the modem. It is practically a
read command with filtering possibilities. This command returns a list of the SMS
messages stored in the SIM card connected to the GSM modem based on the filter
that is given as parameter. There are 2 parameters: <stat> and <mode>. The <stat>
parameter is a string used for filtering the SMS messages. The possible values are:

String value String meaning
“REC UNREAD” Received unread messages
“REC READ” Received read messages
“STO UNSENT” Stored unsent messages
“STO SENT” Stored sent messages
“ALL” All messages

 78 Frequently used Modem AT commands

The <mode> parameter is a numerical values which specifies whether the call should
affect (value 1) or not (value 0) the read/unread status of the messages that are
displayed. The response of this command is a list of the SMS messages in the format
presented in the syntax. The fields have the following meaning:

Field name Field description
<index> The slot number where the SMS is stored in the

SIM card memory
<stat> Read/unread status of the message
<oa/da> Destination/source address (phone number)
<alpha> Optional field. Alphanumeric representation of

the destination/source address from phone
addressbook

<scts> Optional field. Timestamp of SMS message in
string format

<data> The string of the SMS message

 Example:
 Request: AT+CMGL=”ALL”
 Response:
+CMGL: 5,"REC READ","Vodafone","","14/09/30,15:49:51+12"<CR><LF> Bine
ai venit!O data cu prima reincarcare se activeaza automat o optiune cu trafic inclus
de internet. Vei primi vesti!
+CMGL:6,"REC READ", "Notificare", "" , "14/12/15,15:32:42+08" <CR><LF>
Creditul existent este insuficient pentru a trimite mesajul.

Execution Command:
 Syntax:

 Request: AT+CMGL
 Response:
+CMGL:<index>,<stat>,<oa/da>[,<alpha>][,<scts>][,<tooa/toda>,<length>]<CR>
<LF><data><CR><LF>

Description: This execution command is a particular case of the Write command with the
parameter <stat> set to “REC UNREAD”. No further information will be presented here
thus this command being a particular case of Write command.

Digital Telecommunication 79

1.11.12 AT+CMGS

Description: This command is used to send a SMS message. This command has to
stages. In the first stage a write command syntax is required where the destination
phone number is specified. Then, after the command is processed a prompt will be
received from the GSM modem asking for the content of the SMS message
terminated by substitute character (hexadecimal ASCII code 0x1A).

Available command type forms: Write Command

Write Command:

 Syntax:

 Request: AT+CMGS=<da>
 Response: >

 Request: <text_message> 0x1A
 Response: OK

Description: The only command syntax form accepted by this command is the write
command. The syntax requests a parameter <da> which contains the destination
phone number between quotation marks. The first response of the command is a
prompt represented by a “>” symbol. After this prompt is received the actual SMS
message has to be given. The SMS message text must end with the substitute
character which is the character with ASCII code 0x1A.

 Example:
 Request: AT+CMGS=”0722222222”
 Response: >
 Request: “sms message text” 0x1A
 Response: OK

 80 Frequently used Modem AT commands

1.11.13 AT+CMGD

Description: This command is used to delete a SMS message from a memory slot of
the SIM card.

Available command type forms: Read Command

Read Command:

 Syntax:

 Request: AT+CMGD=<index>
 Response: OK

Description: This command is used to delete the SMS message from a memory slot
of the SIM card. The index of the slot is given as parameter <index> to the command.

 Example:
 Request: AT+CMGD=5
 Response: OK

1.11.14 AT+CIPMUX

Description: This command is used to set a feature of the GSM modem whether it
should manage single IP connections or multiple IP connection at the same time. The
idea is to specify if single socket or multi socket operations could be made at the
same time. This setting also has effect over the mode of using the sockets

Available command type forms: Read Command, Write Command

Read Command:

 Syntax:
 Request: AT+CIPMUX?
 Response: +CIPMUX: <n>

Description: This command syntax is used the retrieve the actual value of the
parameter. The parameter is 0 for single IP connection and 1 for multiple IP
connection

Digital Telecommunication 81

 Example:
 Request: AT+CIPMUX?
 Response: +CIPMUX: 1

Write Command:

 Syntax:
 Request: AT+CIPMUX=<n>
 Response: OK

Description: This command syntax is used the set the actual value of the parameter.
The parameter is 0 for single IP connection and 1 for multiple IP connection.

 Example:
 Request: AT+CIPMUX=1
 Response: OK

1.11.15 AT+CIPMODE

Description: This command is used to set the parameter of the GSM mode which
defines the mode the sockets will be used: in transparent mode or in non-transparent
mode. In transparent mode, when a socket is connected the modem relays all
messages to or from the socket directly to the UART interface. In order to exit this
mode special commands have to be used. In non-transparent mode the receiving and
transmitting operations for the network sockets are made through specialized AT
commands

Available command type forms: Read Command, Write Command

Read Command:

 Syntax:
 Request: AT+CIPMODE?
 Response: +CIPMODE: <mode>

Description: This command syntax is used the retrieve the actual value of the
parameter. The parameter is 0 for non-transparent mode and 1 for transparent mode.

 Example:
 Request: AT+CIPMODE?
 Response: +CIPMODE: 0

 82 Frequently used Modem AT commands

Write Command:

 Syntax:
 Request: AT+CIPMODE =<mode>
 Response: OK

Description: This command syntax is used the set the actual value of the parameter.
The parameter is 0 for non-transparent mode and 1 for transparent mode.

 Example:
 Request: AT+CIPMODE=0
 Response: OK

1.11.16 AT+CGREG

Description: Command is used to obtain the registration status by the GSM Modem
into the GPRS network. The command has 2 response forms: a short response giving
only its form number and the actual registration status and along form giving its form
number, the actual registration, the cell id and the location id. This command is
almost identical to AT+CREG but it referrers to the registration to the GPRS
network.

 Available command type forms: Read Command, Write Command

Read Command: short version

 Syntax:

 Request: AT+CGREG?
 Response: +CGREG: <n>, <stat>
Description: The read command returns 2 important parameters: the first parameter
is the form of the command. This parameter is 1 if this short form is used or 2 if the
long form is used. The second parameter <stat> contains a code representing the
actual registration in the network of the GPRS Modem. The <stat> parameter has the
following values:

Digital Telecommunication 83

<stat> value description
0 Modem is not registered in

the network and is not
searching for a network

1 Modem is registered to home
network

2 Modem is not registered but it
is currently searching for a
network

3 Modem registration into the
network was denied

4 Unknown modem registration
state

5 Modem is registered to
roaming network

 Example:
 Request: AT+CGREG?
 Response: +CGREG: 1,2

Read Command: long version

 Syntax:

 Request: AT+CGREG?
 Response: +CGREG: <n>, <stat>, <location_id>, <cell_id>
Description: The read command returns 4 important parameters. The first and
second parameter were presented in the short form description. The third and fourth
parameter are presented as a 4 digit hexadecimal number that represent the code of
the location and the code of the cell.

 Example:
 Request: AT+CGREG?
 Response: +CGREG: 1,2,4A5B,083A

Write Command:
 Syntax:

 Request: AT+CGREG=<n>
 Response: OK
Description: The write command accepts only one parameter having the same values
and meaning as parameter <n> presented above. Writing this parameter selects which
of the 2 read command version should be returned by the modem. Selecting the <n>
parameter to 1 will select the short version of the read command. Selecting the <n>
parameter to 2 will select the long version of the read command.

 84 Frequently used Modem AT commands

 Example:
 Request: AT+CGREG=2
 Response: OK

1.11.17 AT+CGATT

 Description: Command is used to handle the attachment to the GPRS network.

 Available command type forms: Read Command, Write Command

Read Command

 Syntax:

 Request: AT+CGATT?
 Response: +CGATT: <state>

Description: The read command returns the actual state of the GPRS attachment.
The <state> value may be 0 if the GSM modem is detached from GPRS or 1 if the
GSM modem is attached to GPRS

 Example:
 Request: AT+CGATT?
 Response: +CGATT: 1

Write Command

 Syntax:
 Request: AT+CGATT=<state>
 Response: OK
Description: The write command is used to instruct the modem whether it should
attach to the GPRS network. If the <state> parameter value is written to 0 then GPRS
attachment is disable. If the parameter is written to 1 then the attachment to GPRS is
enabled.

 Example:

 Request: AT+CGATT=1
 Response: OK

Digital Telecommunication 85

1.11.18 AT+CSTT

Description: This command is used to manage the active APN and credentials to
connect through the GPRS network.

 Available command type forms: Read Command, Write Command

Write Command

 Syntax:

 Request: AT+CSTT=<apn>,<username>,<password>
 Response: OK

Description: The write command is used to configure the APN and credentials to be
used by the modem in order to connect to the data network. Three parameters are
required: <apn> which holds the name of the APN between quotation marks which
is given by the operator, <username> and <password> holds the credentials also
between quotation marks and also given by the operator

 Example:

 Request: AT+CSTT=”internet.vodafone.ro”,”vodafone”,”vodafone”
 Response: OK

Read Command

 Syntax:

 Request: AT+CSTT?
 Response: +CSTT: <apn>,<username>,<password>

Description: The read command is used to retrieve the currently configured settings
for the APN.

 Example:

 Request: AT+CSTT?
 Response: +CSTT: ”internet.vodafone.ro”,”vodafone”,”vodafone”

 86 Frequently used Modem AT commands

1.11.19 AT+CIICR

Description: This command is used to bring up the wireless connection over GPRS.
This command also initialized the TCP stack is the wireless connection was
successfully activated over GPRS

 Available command type forms: Execution Command
Execution Command

 Syntax:

 Request: AT+CIICR
 Response: OK

1.11.20 AT+CIFSR

Description: This command is used to retrieve the IP address assigned to the GSM
modem by the operator after the TCP IP stack has been configured. The call of this
command is not optional, it is also used to configure the TCP IP stack, not only to
retrieve the IP address

 Available command type forms: Execution Command

Execution Command

 Syntax:

 Request: AT+CIFSR
 Response: <ip_address>

 Example:
 Request: AT+CIFSR
 Response: 192.168.0.1

Digital Telecommunication 87

1.11.21 AT+CIPSTART

Description: This command is used to open a socket connection.

 Available command type forms: Write Command

Write Command

 Syntax:

 Request: AT+CIPSTART=<mode>,<ip_address>,<port>
 Response: OK
 Response: <state>

Description: The write command is used to open a socket connection to a TCP/UDP
server. There are three parameters needed: <mode> which may be a string of value
“TCP” or “UDP”, <ip_address> is a string representing the ip address and <port>
which is also a string representing the port number. The command has to return line.
The first line returns the correctness of the syntax which may be OK or ERROR. The
second return line is represented by the <state> parameter which may have the
following values:

IP INITIAL
IP START
IP CONFIG
IP GPRSACT
IP STATUS
CONNECT OK
TCP CONNECTING/UDP
CONNECTING/SERVICE
LISTENING
CONNECT OK
TCP CLOSING /
UDP CLOSING
TCP CLOSED/
UDP CLOSED
PDP DEACT

The only value that is important is CONNECT OK which signals that the socket was
successfully connected to the host. Other values clearly return other situations and
the connection was not successfully made.

 Example:
 Request: AT+CIPSTART=”TCP”,”216.58.214.67”,”80”
 Response: OK
 Response: CONNECT OK

 88 Frequently used Modem AT commands

1.11.22 AT+CIPSEND

Description: This command is used to send data over an opened socket. Only the
situation where one connection can be handled at the same time. The syntax and
usage of this command is almost identical to AT+CMGS

 Available command type forms: Write Command

Write Command

 Syntax:

 Request: AT+CMGS[=<length>]
 Response: >

 Request: <data> 0x1A
 Response: OK

Description: The command accepts only one parameter which specifies the length
of the data buffer to be sent over the socket. After the command is sent to the modem,
similar to command AT+CMGS, the modem returns prompt represented by character
“>”. In this moment the modem waits for a number of bytes specified in the <length>
parameter to be sent followed by the substitute character 0x1A. The length parameter
may be omitted.

 Example:
 Request: AT+CIPSEND
 Response: >
 Request: “sms message text” 0x1A
 Response: OK
 Response: SEND OK

1.11.23 AT+CIPCLOSE

Description: This command is used to close the opened socket.

 Available command type forms: Execution Command

Execution Command
 Syntax:

 Request: AT+CIPCLOSE
 Response: OK

 Example:
 Request: AT+CIPCLOSE
 Response: OK

Digital Signal Acquisition and Conditioning 89

2 Digital Signal Acquisition and Conditioning

2.1 Introduction

2.1.1 General specifications

 The Digital Signal Acquisition and Conditioning laboratory introduces the student
into basic methods to acquire and process digital signals by implementing simple
applications. The laboratory works are structured in such a way that at the end of the
semester a complex application will be built. The finality of the laboratory will be a two
channel oscilloscope implemented using the provided hardware and software materials.
An intermediate milestone will also be considered, which will be represented by a digital
voltmeter.
 In order to attend to this laboratory the students must have the following mandatory
prerequisites:

- Strong C programming skills [1]
- Basic knowledge in electronic fundaments
- Capacity to interpret an electronic schematic

2.1.2 Provided materials

 This laboratory will be oriented on signal acquisition and conditioning using
embedded devices. The main component, which the students will use, is the Atmel
ATMEGA16 microcontroller [14]. The microcontroller will be encapsulated on a header
board, which the students can easily use to connect to other external components. Another
important component provided to the students is a project board-based student learning
kit formally designed by Freescale now currently maintained by NXP. The main
advantage of this board is that it consists of a breadboard, which can be used to build
prototype circuits and a peripheral board, which contains an important number of
peripherals.
 Beside the hardware components presented above, the students will also have access
to a dedicated software, which will serve as an oscilloscope display and control along with
the necessary developing tools and serial communication port terminals.
 Moreover, in order to be able to test the projects, the students will also need access
to oscilloscopes and signal generators.
 In this chapter, the following subsections will be reserved for the description of the
modules that will be provided to the students.

 90 Introduction

2.1.2.1 ATMEGA16 Microcontroller, header board and debugger

 ATMEGA16 is an 8bit MEGA-AVR microcontroller designed around a RISC
architecture core surrounded by peripheral devices. The microcontroller has 16 KB of
Flash memory available for code along with 1 KB of SRAM and 512 bytes of EEPROM
memory. The main peripheral devices available in the ATMEGA16 microcontroller are:

- 2 8-bit timers
- 1 16-bit timer
- Real time counter
- 4 channel of PWM
- SPI interface
- UART interface
- Analog to Digital Converter
- 4 8-bit General Purpose Input Output Ports

 Although this microcontroller has very low performance comparing to the existing
microcontrollers currently present on the market, it maintains its high didactical value thus
being one of the most suitable microcontrollers for teaching. A strong argument to sustain
this statement is that it only requires a power supply in order to run and it is available in
40 pin DIP capsule thus making it perfect for building small circuits on a breadboard.
Another important advantage is that it can be clocked using an internal RC oscillator with
a maximum frequency of 8MHz.
 The pinout of ATMEGA16 is also very simple and well organized as presented in
Fig. 2-1 [14]:

 Fig. 2-1 Pinout of ATMEGA16

Digital Signal Acquisition and Conditioning 91

 As it can be observed in the pinout, the microcontroller has 4 ports available for
connections: PORTA, PORTB, PORTC and PORTD. Each pin is presented with its
designated ranking in the corresponding port (ex. PB1 being line 1 from PORTB) along
with its alternated function. A currently used practice in microcontrollers is to multiplex
more functions on a pin, thus reducing the number of pins in the capsule. In the case of
ATMEGA16 the alternate functions of a pin are written in brackets. For example, pin PD0
is normally a GPIO pin belonging to PORTD but when the serial interface is activated the
function of this pin changes to the RXD signal of the serial interface. Same rule is
available for all pins. Special attention needs to be taken when using the lines of PORTA.
In order for these to work, even in GPIO mode, power needs to be applied to the AVCC
pin.
 ATMEGA16 may be programmed either by using the ISP interface or by using a
dedicated JTAG debugger. When using an ISP programmer the PINS involved in this
operation are pins from 5 to 11. Practically, an ISP programmer needs access to the SPI
interface of the microcontroller as well as to the RESET pin and, if needed, to the power
supply related pins. A possible connection schematic for connecting an ISP programmer
to ATMEGA16 through a standard 2x5 connector may be the following:

 Fig. 2-2 ATMEGA16 ISP connection

 The ISP programming of ATMEGA16 is limited only to downloading the executable
code from the PC into the microcontroller’s flash memory and programming of the Fuse
Bits. No real-time debugging can be made using an ISP programming. In order to be able
to debug a running code, in real time, on a microcontroller a JTAG debugger is usually

 92 Introduction

required. The JTAG is connected to the microcontroller through dedicated pins. In the
case of ATMEGA16 the dedicated pins for JTAG connections belong to PORTC from
PC2 to PC5. It is important to mention that if the JTAG interface is enabled on the
ATMEGA16 microcontroller these pins cannot be used by the programmer. These pins
remain dedicated to the JTAG interface. The connection between a standard 2x5 pin JTAG
connector and ATMEGA16 may be done as shown in the following figure:

 Fig. 2-3 ATMEGA16 JTAG connection

 The JTAG that will be used for downloading the code to the ATMEGA16
microcontroller as well as for debugging the running code is the Atmel-ICE JTAG [15],
which is supported by the new development tools from Atmel.
 The enable/disable of the JTAG interface of ATMEGA16 as well as other critical
settings of the microcontroller may be configured by accessing the so called Fuse Bits.
These bits are practically represented by registers which may only be accessed by a JTAG
or ISP programmer. The Fuse Bits registers cannot be accessed from the running code
from the FLASH memory and they are not visible to the programmer.
 Using the Fuse Bits the following items may be configured (via JTAG or ISP
programmer):

- JTAG interface – it may be enabled or disabled
- ISP interface – it may be enabled or disabled
- Preservation of the contents of the internal EEPROM memory upon programming

the FLASH memory
- Brown-out detector

Digital Signal Acquisition and Conditioning 93

- Clock source – various internal RC oscillator clock frequencies, external quartz
oscillator, external clock source

2.1.2.2 ATMEGA16 header board

 During this laboratory the ATMEGA16 microcontroller will be used along with a
small header board which will not only export all the microcontroller’s pins on header but
will also contain a JTAG connector a quartz oscillator connected to the microcontroller.
Such a board may be the following:

 Fig. 2-4 ATMEGA16 header board

 As it may be observed in Fig. 2-4, the microcontroller is surrounded by 2 female 2
line headers. Each pin from the microcontroller is directly connected to the corresponding
pins near it. Practically all the pins from the microcontroller are accessible using the 2 line
female headers. A block schematic of the header board may be found in Fig. 2-5:

 94 Introduction

 Fig. 2-5 ATMEGA16 header board block schematic

2.1.2.3 Peripheral board

 The header board presented above will be interfaced with a peripheral board which
will also be provided for de students during these laboratory assignments. The peripheral
board, code name PBMCUSLK AXM-0392 [16] was initially designed by Freescale and
now it is maintained by NXP. This board practically consists of an isolated breadboard
which is only mechanically linked to an electronic board containing various peripherals
from LEDs, pushbuttons, serial interface, LCD to various connectors as presented in Fig.
2-6

 Fig. 2-6 PBMCUSLK peripheral board [16]

ATM
EG

A
16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

Digital Signal Acquisition and Conditioning 95

 As stated before, the breadboard in the middle is only mechanically connected to the
rest of the board. No electrical connections are made. In order to connect the peripherals
on the PBMCUSLK board to a circuit being designed on the breadboard, the black female
header surrounding the breadboard may be used. The significance of each pin in the
header is written near the pin itself. No additional documentation is needed in order to use
the board in basic applications. If needed, more information about the board may be find
in its user manual [16].

2.1.2.4 Relevant documentation

 Beside the present laboratory work manual, in order for the attendees to be able to
process these laboratory works access to further documentation is needed. A list with
some of the needed documents, may be the following:

- Brian W. Kernighan, Dennis M. Ritchie - The C Programming Language [1]
- ATMEGA16 User Manual and Datasheet [14]

2.1.3 Laboratory applications planning

 The main goal of this laboratory is to provide the students with the knowledge to
acquire and process digital signals using embedded systems. The finality of the laboratory
will be an oscilloscope with 2 channels with negative and positive triggering along with
frequency measurement and time scale change. In order to accomplish this goal the
laboratory works and assignments are structured in such a way that each laboratory work
will build on top of the result of the previous laboratory work. Having this approach, each
laboratory work will be the project closer to completion.
 The first laboratory work will be concentrated into introducing the students into the
programming of ATMEGA16 using the provided materials. The developing tools
provided by Atmel will be presented along with the structure of the necessary
documentation. The practical aspect of this first laboratory work will be to implement a
small LED blink application on the microcontroller.
 The second laboratory work is oriented into establishing the communication between
the microcontroller and the host PC via the RS-232 interface. The communication
protocol will be presented in detail along with the serial port terminal emulator running
on the host PC which will be used to communicate with the microcontroller through a
COM port. Students will have to configure the UART interface of ATMEGA16 and
implement a small library containing the necessary operations to work with the UART
interface. The mail program will have to be able to continuously send the same character
over the serial interface to be viewed on the host PC.
 The main subject of laboratory work 3 is represented by the Analog to Digital
Converter of the ATMEGA16 microcontroller. Students will have to acquire the signal
on one of the converters channels and make the necessary calculations to convert the
capture sampled into voltage. The finality of this laboratory work will be a digital
voltmeter with the terminal emulation software on the PC as a viewer of the voltage.

 96 Laboratory work 1 – First project: LED blink

 In laboratory work 4 the first aspects of the oscilloscopes will be implemented using
a dedicated software on the host PC for visualizing the waveforms. In order to reach this
goal students will have to use an addiction ADC channel and also implement a small
communication protocol overt the RS-232 interface in order to be able to send the correct
data to the PC visualization application.
 The following laboratory works are mainly concentrated into implementing
additional features of the newly developed oscilloscope. In first step triggering will be
added. With triggering available the signal frequency values will be calculated for the
synchronized channel.
 Laboratory work 7 and 8 are responsible for implementing the RS-232 reception for
the microcontroller. In this step the microcontroller will have to recognize small
commands sent using the visualization software on the PC. The commands will have to
implement basic controls that are found on a real oscilloscope.

week Laboratory work Observations
1 Establishing laboratory groups Establish groups of 2
2 Introduction + Laboratory work 1
3 Laboratory work 2
4

Laboratory work 3

5
6

Laboratory work 4

7
8 Laboratory work 5
9

Laboratory work 6

10
11 Laboratory work 7
12

Laboratory work 8

13
14

Table 4 Laboratory applications planning

2.2 Laboratory work 1 – First project: LED blink

 This laboratory work presents to the students the first steps into developing and
debugging applications on Atmel ATMEGA16 microcontroller with the aid of Atmel
Studio 7 environment. As it is customary, the first application that is to be considered
when beginning work on a new microcontroller, or even as first steps in embedded
programming, is the LED blink application using software delays.
 The presentation of this laboratory work will be divided according to 2 point of
views: a hardware point of view and a software point of view. The hardware part will
present the necessary connections to be made in order to build the first LED blinking

Digital Signal Acquisition and Conditioning 97

applications. The software part is responsible for presenting both the developing
environment and the coding to be designed in order to build the application.
 Before considering into analysis the schematic that should be implemented, the focus
needs to go on the basic schematic of a microcontroller with emphasize on the GPIO
module. A generic schematic of a microcontroller with a serious customization for the
ATMEGA16 microcontroller which will be used for the laboratory works is presented in
the following figure:

 Fig. 2-7 General microcontroller block diagram

 In the schematic above, the central piece of the microcontroller is represented by the
CORE. This is practically an ALU which has the only task of executing the code.
Embedded into the silicon capsule along with the Core are the two usually present
memories: the FLASH memory and the RAM memory. The FLASH memory is used to
store the code that will be executed by the Core. The RAM memory is practically the Data
Memory that will store the variable data of the code. Both of these memories are usually
accessed directly by the core event through the FLASH memory, which is sometimes
cached. The Core is also connected via various busses to numerous peripheral devices. In
our upper schematic we can identify peripherals such as the UART module, TIMER,
Analog to Digital Converter (ADC) and the highly used General Purpose Input Output
module.
 The module that presents great interest to our laboratory work is the GPIO module.
This module offers a collection of digital lines, organized in ports that have the advantage
that they can be programmed to both be able to establish a logic values on the line but are
also able to read the logic value of the line. Our current laboratory work focuses on using
this module in order to implement the LED blinking application.
 The first aspect to be discussed is the schematic that needs to be implemented to
make the LED blink application. The block schematic is presented in Fig. 2-8

CORE
Mega AVR

FLASH memory

RAM memory

DEBUG module

UART GPIO TIMER ADC

 98 Laboratory work 1 – First project: LED blink

 Fig. 2-8 Led blink connection block schematic

 Having a more detailed analysis the necessary connections to be made are the
following:

- Connect the 5 V power line from the header on the peripheral board to the correct
pin of the ATMEGA16 header board (pin 10 on ATMEGA16)

- Connect the GND line from the header on the peripheral board to the correct pin
of the ATMEGA16 header board (pin 11 on ATMEGA16)

- Connect one of the LEDs of the peripheral board (using the corresponding pin on
one of the headers) to line 0 of PORTB (PB0) of ATMEGA16 from the
ATMEGA16 header board

- Connect the Atmel ICE JTAG to the ATMEGA16 header board and to an USB
port from the PC

 ASSIGNMENT 1: Make the connections described above. Search the correct pins
both of the peripheral board and on the ATMEGA16 header board. Have the laboratory
teacher verify the connections before powering up the system.

 In this first step, making the hardware connections, represents the simplest task from
this laboratory applications. The much more complex task is from a software point of
view. Firstly, the primary steps into creating and configuring a new project into the
developing environment Atmel Studio 7 will be presented. The starting point of the Atmel
Studio 7 environment is presented in Fig. 2-9.

ATMEGA16
Header
Board

Freescale
PBMCUSLK

peripheral board

Vcc = 5V

GND

PB0 to LED 1

Atmel ICE JTAG

Digital Signal Acquisition and Conditioning 99

 Fig. 2-9 Atmel Studio 7 starting page

 To create a new project the “New project…” link found on the left side as presented
in Fig. 2-9 needs to be selected. The same behavior is available if using the menu bar: File
-> New -> Project. The new project type that will be used is “GCC Executable Project”.
Also the location path and project name can be specified as presented in Fig. 2-10:

 100 Laboratory work 1 – First project: LED blink

 Fig. 2-10 Atmel Studio 7 new project dialog

 The next step into creating a new developing project is to specify which
microcontroller to be used. Select the Atmega16 device by searching it into the list of
microcontrollers supported by Atmel Studio 7. In order to narrow down the search use the
Device family combo box to filter the list for Atmega family. Such an example is
presented in Fig. 2-11:

 Fig. 2-11 Atmel Studio 7 microcontroller selection

Digital Signal Acquisition and Conditioning 101

 After the project is successfully created, the development studio adds a template code
file to the project containing only the main function. In order to view the project structure
with the files referred by the project select the “Solution explorer” setting either by finding
it on tab in the right part of the application or by using the menu View -> Solution Explorer
(hotkey CTRL+AL+L). This usually shows the solution explorer on the right of the
applications as shown in figure:

 Fig. 2-12 Atmel Studio 7 with project created and solution explorer present

 The next step is to configure some options of the newly created project. In order to
avoid some issues during programming, the compiler optimizations have to be disabled.
There are many positive aspects when using compiler optimizations and in many situation
are quite recommended. In our situation it is best to avoid the compiler optimizations
mainly because we need to concentrate on the functionality of the applications rather than
on performance.
 In order to access compiler optimizations a right click on the project is necessary (in
our case on GccApplication1 in project explorer) with the selection of Properties in the
right click menu. To reach compiler optimizations select Toolchain from the left and under
AVR/GNU C Compiler select optimization. From the Optimization Level combo-box

 102 Laboratory work 1 – First project: LED blink

select (None –O0) for optimization level. A preview of the dialog for this issue is
presented in Fig. 2-13:

 Fig. 2-13 Atmel Studio 7 compiler optimizations

 The next important project configuration, which needs to be taken care of, is the
selection of the Tool to be used for debugging. Having the previous screen, we used to
configure the compiler optimizations select Tool option from the left. The following
screen should appear:

Digital Signal Acquisition and Conditioning 103

 Fig. 2-14 Atmel Studio 7 tool selection

 In Fig. 2-10, under the “Selected debugger/programmer” combo-box two options
should be available (depending if the Atmel ICE debugger is connected via USB to the
PC): the Simulator and the Atmel ICE debugger. The choice of this combo-box should
not be permanent. If, in any moment, the student would want to use the simulator instead
of the hardware JTAG debugger he can do so by selection the corresponding options. The
only observation is that in Simulator mode, the developing environment is disconnected
from the target. In order to be able to download the code on the microcontroller and to
debug it, the Atmel ICE debugger (in our case) should be selected.
 When selecting the Atmel ICE debugger more options regarding this tool will appear
on the same dialog. From the interface combo-box the JTAG option needs to be selected.
Moreover, special attention needs to be taken on the value of the JTAG clock. A safe
value to use would be 200 kHz as the default value should be. An example of settings
what should be configured in this dialog is presented in the next figure:

 104 Laboratory work 1 – First project: LED blink

 Fig. 2-15 Atmel Studio 7 tool selection and configuration

 After these configurations are done the project should be save in order to use the
same configured environment next time.
 Another important aspect, which needs to be discussed, is how the target and the
connection between the target and the JTAG should be tested. This testing method should
usually be used before starting working with the target, but usually only once at the
beginning of, if malfunctioning is detected. The testing method involved bringing up the
Device programming dialog by selecting from main menu Tools -> Device Programming.
The dialog that should be brought up is similar to the one presented in the next figure:

Digital Signal Acquisition and Conditioning 105

 Fig. 2-16 Atmel Studio 7 Device programming dialog

 In this dialog, mainly in the upper part, in the first opening, usually only the tool
remains selected (as Atmel-ICE in our case). Having Fig. 2-16 as an example, in the
“Device” combo-box select ATmega16 and on the interface select JTAG if not already
selected. After the selections press Apply and, if the connections are in order, then no
error message should be displayed. In order to further verify the JTAG communication
press read on the “Device Signature” region in order to read it from your ATMEGA16
microcontroller. A valid serial number should be read, in the case of a good
communication. Moreover, in order to assure that the voltages are properly applied, the
Target Voltage should be read by using the appropriate button. Having all of this
information obtained, one can draw the conclusion that the JTAG communication with
the target microcontroller is working properly.
 Having all of this configured we can be assured that the project is suited for
development. Note that this configuring should only be done once for the same project.
Giving the fact that this laboratory tends to use a constructive, building approach, this
newly created and configured project should be used for all the coming laboratory works.
 Having the first project created in order take it to run on target it first must be
compiled and built. This is done by accessing the menu Build -> Build Solution. The very

 106 Laboratory work 1 – First project: LED blink

used shortcut key for this operation is F7. The result of the compilation is presented in the
Output tab on the bottom of the Atmel Studio 7 screen as shown in Fig. 2-17:

 Fig. 2-17 Atmel Studio 7 Compilation result

 Having a closer look on the output of the compilation in Fig. 2-17 we can observe
not only the results on the last line but also, in case of successful compilation, the amount
of code that the executable uses and also the amount of data memory needed with values
in both bytes and percentage. The percentage is calculated relatively to the maximum
amount of memory available for the currently selected microcontroller.
 This information is important to an embedded developer not only to know if the code
can fit the flash of the microcontroller or if the data memory is enough but also to calculate
the differences if compiler optimizations are used. Currently our only interest is knowing
if the program fits the available memories.
 The next step into developing our application is to write the necessary code. Taking
a closer look of the generated code of the newly created project we can identify a very
important include statement:

Digital Signal Acquisition and Conditioning 107

 Code listing 2-1 Register definition header include

#include <avr/io.h>

 This line of code includes, into the code file it is written, the header file containing
the definitions of register names of ATMEGA16. Beside this include, further includes
should always be present into every ATMEGA16 project:

 Code listing 2-2 Necessary includes

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>

 All the necessary includes that should be present in almost every file within an
ATMEGA16 project are the ones presented above. The first include was detailed before.
The second include header file contains the definitions of the interrupt vectors of
ATMEGA16. The last include contains the file defining delay functions. In order for this
included library to properly work the CPU frequency should be properly defined using:

 Code listing 2-3 CPU Frequency definition

#define F_CPU 14745600UL

 This definition “informs” the delay library of the frequency the processor is clocked
by. In our situation, as presented above, the clock frequency is 14.7456 MHz or 14754600
Hz.
 A full list of the inclusions and definitions that should be present in manly all the
files referring to the ATMEGA16 periphery can be the following:

 Code listing 2-4 CPU Frequency definition

#define F_CPU 14745600UL

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>

 As stated before, the module that will be used in order to blink the LED, is the GPIO
module.
 The digital lines of the GPIO module are organized in ports. The ATMEGA16
microcontroller has 4, 8 bit lines wide ports (PORTA, PORTB, PORTC, PORTD). The
main characteristic of a port line is the direction. For example, if we need to drive a LED
connected to a port line, meaning we would like to establish a high or low logical value
in order to power on or off the LED, the line is considered to be an output line. In another
example, if we want to read the logical value of a line, for instance, when connecting a
push button to a port line and wanting to read the state of a push button, the line is
considered to be an input line.

 108 Laboratory work 1 – First project: LED blink

 Another important aspect is the one related to how a port line can be driven, when it
is an output port line, or how it can be read, when it is configured as an input line. This
and the configuration of the direction of a port line can be accessed through a collection
of registers. All the registers have the same structure, as in Fig. 2-18, but with different
meaning. Every port of the microcontroller has the same collection of registers. Each bit
of the register controls the “characteristic” of the corresponding digital line of the port.

 Fig. 2-18 ATMEGA16 General GPIO register structure

 The above structure is available for all the registers corresponding to the GPIO
module of ATMEGA16. The first aspect to be analyzed, as discussed above, is represented
by the direction of a port line. As stated in the documentation of ATMEGA16 the DDRx
registers are related to this aspect as that writing a logic 1 to one bit of this register
configures the selected line as an output line. Also, writing a logic 0 to one bit of this
register configures the corresponding line as an input line. The DDRx registers (where x
identifies the port: A, B, C or D) have the same structure as in Fig. 2-18.
 Another important set of registers for the GPIO module of ATMEGA is the set of
PORTx registers (where x identifies the port: A, B, C or D). These registers are only to
be used for the lines which are configured as output. These registers define the logical
value that the line has. For example, writing a logic 1 on one of the bits of a PORTx
register, the corresponding line of port x is driven to logic 1. Same algorithm applies for
writing a logic 0 value.
 A register set related to the PORTx register set presented above is the PINx register
set. The PINx registers are used when working with input lines. From these registers we
can determine the logical value of a line (pin) of a microcontroller. Reading this registers
practically offers the logic state of a line or pin configured as input. For example, when
reading logic 1 of a bit in a PINx register the corresponding pin has a logic 1 value applied
on it. Some goes for 0 logic.
 More information about how the GPIO system works may be found in the
ATMEGA16 datasheet on chapter named I/O Ports [14]

 ASSIGNMENT 2: Read the ATMEGA16 documentation and find the registers that
have to be configured in order to drive a LED connection to line PB0 of the
microcontroller. Establish and explain the values to be written in the registers.

Px0 Px1 Px2 Px3 Px4 Px5 Px6 Px7

Digital Signal Acquisition and Conditioning 109

 A pseudocode implementation of a program which blinks the LED can be the
following:

 Code listing 2-5 Led blink main program flow

void main()
{
 init_led(); // initialize the port direction using DDRx register
 while(1)
 {
 led_on(); // turn on led, logic 1 on coresponding bit from PORTx register
 delay(); // delay loop
 led_off(); // turn off led, logic 0 on coresponding bit from PORTx register
 delay(); // delay loop
 }
}

 The init_led pseudocode function represents the configuration of the directions of the
pin the LED is connected to. The led_on and led_off represent the code lines needed to
drive the pin the LED is connected to, in order to turn the LED on or off.
 The delay function may be implemented using the provided library functions with
the following prototypes:

 Code listing 2-6 Delay functions prototypes

void _delay_ms(int milliseconds);
void _delay_us(int microseconds);

 ASSIGNMENT 3: Write a microcontroller program that blinks a LED with a period
of 500 ms using delays.
 HOME ASSIGNMENT: Read documentation related to the RS-232
communication protocol. Read the documentation about the RS-232 serial interface of
ATMEGA16. Make a list with the registers that should be used to configure the serial
interface of ATMEGA16 along with the values that should be considered. Take into
account the serial communication parameters of BAUD 9600, 8 bits per character, 1 stop
bit. Also, make a list of the bits and registers that have to be accessed in order to transmit
a byte over the serial UART line.

2.3 Laboratory work 2 – Serial communication - transmission

 This second laboratory work is concentrated into developing the first microcontroller
application with serial communication. The serial communication, universal
asynchronous receiver transmitter (UART) RS-232 protocol, will be presented. From the
microcontroller only the transmission will be implemented for now. The serial reception
is scheduled to be presented in another laboratory application. During all the laboratory
applications we will consider a simple UART communication with no hardware flow

 110 Laboratory work 2 – Serial communication - transmission

controls. The outcome of this laboratory will be to build an application that transmits a
character every second over the serial interface. The character is then displayed on a PC
using a terminal software.
 The UART protocol is probably one of the oldest communication protocols that are
still being used in many applications. Even though it was designed in the 1960’s the
protocol is highly used even now because of its simplicity. Of course, nowadays it is used
at much higher speeds than in the ones in the 60’s.
 When communicating using a synchronous protocol, a clock signal is present, thus
the time synchronization is assured. In an asynchronous communication, the clock signal
is not present and the data must carry its own information for time synchronization [17].
In the simple UART communications with no hardware flow control there may be only 2
communicating partners which may switch their role from receiver to transmitter. Each
terminal has 2 dedicated lines for communication: a receive line (RX) and a transmit line
TX. These lines are connected as displayed in the following figure:

 Fig. 2-19 UART communicating terminals

 As stated before, giving the fact that no clock signal is present, the synchronization
needs to be carried out by the transmitted data. In order for the synchronization to be
accomplished, each communicating partner needs to sample the bits on the line with the
same sample rate, which in communication, is translated into a symbol rate. The same
symbol rate is needed to be configured in each communicating terminal. The symbol rate
has the BAUD as a unit of measurement. Moreover, another important measuring unit is
the transmission speed which is the number of bits transmitted per second (bps). It is
customary to use the term “the BAUD of the serial communication is …”, for example,
9600 bps. Having a more practical approach, the main interest is actually on how long a
bit is in time. This is usually calculated using:

1

Having an example of a BAUD of 9600 bps the length of a bit is:

1 1
9600

104	

If having to watch the character ‘a’ being transmitted using an oscilloscope it should look
like in the following figure:

TERMINAL 2

TX

RX

TERMINAL 1

RX

TX

Digital Signal Acquisition and Conditioning 111

 Fig. 2-20 UART character serialization

 Using the oscilloscope to measure the time a bit occupies when having a BAUD of
9600 for bit sample rate, the following result may be found as shown in the oscilloscope
capture:

 Fig. 2-21 UART bit measurement

 In Fig. 2-21 the cursors were set to measure the one bit. The result is displayed in the
bottom right corner as being 104.0 us (or 9.61 kHz if converted to frequency). We can
notice that the value in kHz is almost equal to the value of the BAUD of 9600 bps.

 112 Laboratory work 2 – Serial communication - transmission

 Both the transmitted and the receiver have to be configured in order to both use the
same BAUD rate. Having differences between the sampling rates of the two
communicating partners may result in transmission errors.
 The next important aspect, which needs to be discussed, is how data is encapsulated
by the protocol in order to be transmitted over the line. This aspect is described by the
following table:

Length (bits) 1 5-9 1-2
meaning Start bit Data bits Stop bits

Table 5 UART protocol encapsulation

 As found in Table 5 the protocol starts with a start bit. This bit announces that a new
frame begins. Having an UART line inactive at logic “1” the start bit is usually encoded
as logic “0”. This is, in many cases, hard coded. The programmer usually cannot modify
the number, length or values of the start bit.
 Following the start bit, there are 5 to 9 bits of data. This is represented by a
configurable parameter and needs to be the same on the receiver and transmitter. The data
for which the protocol was designed is represented by characters which may be encoded
in 5 to 8 bits according to the ASCII table. In the situation when 9 bits of data are specified,
the 9th bit serves as parity which is calculated by both the transmitter and receiver. The
receiver also compares the calculated parity with the one transported by the 9th bit in order
to detect transmission errors. There may be an even parity or an odd parity. In an even
parity the 9th bit is logic “0” when there is are even number of logic “1” bits in the data
word. Same algorithm goes for the odd parity. In many situations the parity is not used,
thus the number of data bits is set to 8 in order to disable parity. This is also usually
configurable.
 After the data is sampled, the frame ends with one, one and a half or two stop bits
which are usually encoded as logic “1” bits. This option is also configurable.
 Having these explain, the following conclusions may be deducted:

- Both the receiver and the transmitter have to function on the same parameters
- Only 2 communication partners may be used in serial UART communication bus
- Both of the communication partners may be receivers or transmitters
- Each communication partner has 2 lines: a reception line and a transmission line
- The start bit is only one with logic value “0” and is not configurable
- The configurable parameters are:

o Character length: 5,6,7,8 bits
o Parity

 Odd parity
 Even parity
 No parity

o Number of stop bits (1 bit, 1+1/2 bits, 2 bits)
o BAUD rate

- Same configuration needs to be present on both communicating partners

Digital Signal Acquisition and Conditioning 113

 The ATMEGA16 microcontroller has a dedicated peripheral module serving as an
UART interface. The full documentation of the USART interface of ATMEGA16 may be
found in the ATMEGA16 datasheet [14] at the USART Chapter. The pins that are mapped
for the USART interface are found on PORTD and are PD0 serving as RX (RXD) and
PD1 serving as TX (TXD).
 The next step is to make the necessary connections between the ATMEGA16 header
board and the peripheral board on one hand and on the other hand between the peripheral
board and the PC. A block schematic of the connections to be made is displayed in the
following block diagram:

 Fig. 2-22 UART connections block diagram

 It is important to mention that the signals (RX and TX) between the ATMEGA16
and the peripheral board have CMOS/TTL voltage levels. These levels cannot be used to
send data over long lines. A solution to this is to translate these signals into EIA voltage
levels, which are more resistant to hazardous environments and can also be used to send
data over longer lines. In our case, EIA voltage levels are used to transfer the data from
the peripheral board to the host PC using a standard DB9 serial cable. The translation of
the signals is done on the peripheral board using a dedicated integrated circuit, like
MAX232 [18]
 The first set of connections can be made using the provided wires. The TXD pin
(PD1) from ATMEGA16 header board needs to be connected to the TXD header pin on
the peripheral board and the RXD pin (PD0) from ATMEGA16 header board needs to be
connected to the RXD pin on the header of the peripheral board. The signals of the
peripheral board are named from a peripheral point of view.
 The second set of connection can be made using a standard DB9 serial cable in order
to connect the serial interface (through the DB9 connector) of the peripheral board to the
serial interface of the host PC.

 ASSIGNMENT 1: Make the necessary connections and have the laboratory
supervisor verify them.

ATMEGA16
Header board Peripheral board Host PC

TX

RX

RS‐232

TTL/CMOS voltage levels EIA voltage levels

 114 Laboratory work 2 – Serial communication - transmission

 The next step is to concentrate on the software part of the ATMEGA16. Prior to the
configuration of the USART module of ATMEGA16 the direction of the responsible pins
needs to be set accordingly using the DDRD register. The PD1 serving as TXD pin, acting
as the transmission pin of the USART interface should be configured as output. The PD0
pin serving as RXD pin, acting as the receiver pin, should be configured as input. Same
algorithm is applied as in the previous laboratory work. For more information please read
the I/O Ports Chapter in the ATMEGA16 documentation.

 ASSIGNMENT 2: Read the documentation regarding the USART module of
ATMEGA16 concentrating on the registers. Make a list with all the registers that should
be used for configuring the USART interface. The interface should be configured with
the following parameters: BAUD 9600 bps, 1 stop bit, 8 bits per character, no parity. Pay
special attention on the address sharing of registers UBRRH and UCSRC (URSEL bit
makes the difference).

 The first aspect in the configuration of the UART peripheral module of ATMEGA16
is to calculate the divisor value (UBRR) that the microcontroller will use to generate the
BAUD. This can be done by using the formula provided by the producer which can also
be found the official documentation:

16 ∙
1

 (2-1)

Where:

 – represents the frequency of the ATMEGA16 internal clock in Hz (in our case 8
MHz)
BAUD – represents the actual baud rate (in our case 9600)
UBRR – represents the calculated value of the divisor which must not exceed 16 bits in
size (no more than 0xFFFF)

 The calculated baud rate divisor needs to be written into UBRRH:UBRRL registers
which separate the most significant byte and the least significant byte of the 2 byte value
UBBR. The UBRRH register, containing the most significant byte of UBRR needs to
written first. The UBRRH register and the UCSRC register of the UART interface share
the same address space. They can be differentiated by the value of bit 7, URSEL, in
UCSRC register. According to the documentation when this bit is set to 0 the UBRRH is
accessible. When needing to access UCRSC, this bit (URSEL) needs to be set to 1.
 Beside the UBRRH and UBRRL registers, here is a collection of configuration and
control registers which are used to control the UART interface. The full documentation
of these registers has to be read in order to fully understand the functionality. In the
following paragraphs only basic aspects will be discussed.

Digital Signal Acquisition and Conditioning 115

 The UCSRA register contains mainly flags that are important when configuring the
interface. The only bits that are significant for configuration are the U2X bit and MPCM
bit. These bits should be left as logic 0 in our case.
 Most of the configuration of the interface is done using the UCSRB register. We
should be focused on the bits RXEN, TXEN and UCSZ2. The RXEN and TXEN should
be written as logic one in order to enable the UART received (RXEN) and the transmitter
(TXEN). Even if, for now, we will only work with the transmitter, we should enable also
the receiver, thus it will be used in the coming laboratory works. The UCSZ2 register has
meaning only along with UCSZ1 and UCSZ0. The value formed by these three registers
define the size of the data word. The corresponding values can be identified in a table in
the documentation under the UCSRC register. For this laboratory work, considering that
we will use a data word of 8 bits wide, we will consider the bits having the following
values: UCSZ2 = 0, UCSZ1 = 1, UCSZ0 = 1.
 Pay attention that the UCSZ2 bit is contained in the UCSRB register but UCSZ1 and
UCSZ0 are contained in the UCSRC register. Regarding the UCSRC register practically
only these 2 pins need to be set to logic 1, the rest should be left as logic 0. The UCRSC
register contains bits that configure the number of stop bits, the parity settings, and the
synchronous/asynchronous operation of the interface. Letting the rest of the bits 0, beside
UCSZ1 and UCSZ0 will let the interface configured as asynchronous, no parity and 1 stop
bit.
 It is important to mention that the attendees must read the whole documentation of
these registers and not rely only on the explanations found in this laboratory work.

 The configuring of a register should be implemented inside a function with a proper
name. Once the interface is configured, the data transmit algorithm needs to be
implemented. The flowchart for the configuration of the UART interface may be the one
described in the following figure:

 116 Laboratory work 2 – Serial communication - transmission

 Fig. 2-23 UART initialization flowchart

 In order for the interface to transmit a character, the data needs to be written into the
transmission register: UDR. The same register is also used to read a newly arrived byte
from the serial interface. Writing a byte to the UDR register is not enough when making
a transmission over the UART interface. The programmer must also wait for the current
byte to be transmitted. This may be done by using the UDRE bit in UCSRA. This bit
informs the programmer when the transmit UDR data register is empty. After the UDR
register is written for transmission the UDRE bit becomes logic 0. After the interface
serializes the byte over the line the UDR data register becomes empty thus signaled to the
programmer with UDRE bit becoming logic 0. If the programmer does not wait for the
data to be transmitted over the serial line, more exactly for the transmission register to be
emptied by the interface, there is a risk for this register to be written when it is not empty.
In this situation the currently transmitted byte is corrupted and data overrun error is
signaled through the appropriate byte in UCRSA.
 A possible flowchart of the function capable in transmitting a byte over the UART
may be found in the following figure:

Set the pin directions for PD0
and PD1 accordingly for RXD

and TXD

Calculate the BAUD rate divizor

Gain access to UBRRH by
writing URSEL bit as 0 in UCSRC

Write the calculated divisor to
UBRRH and UBRRL

Write the necessary bits in
UCSRA

Write the necessary bits in
UCSRB

Write the necessary bits in
UCSRC with URSEL set to 1 to

gain access

Digital Signal Acquisition and Conditioning 117

Fig. 2-24 UART transmit flowchart

 When a character is transmitted over the serial line, in our case, using the connection
to the PC as presented in Fig. 2-22, it can be displayed using a dedicated terminal software.
Such a software is Docklight Scripting which can configure a serial COM port from the
PC and can also be used for sending and receiving data.
 Docklight scripting is an easy to use, but powerful, serial terminal software. The main
advantages of Docklight scripting are:

- possibility to have access to all the settings of the serial port
- can function as a TCP/UDP client or server
- offers the possibility to define and send macros over the line (serial or network)
- has scripting features in order to simplify protocol interpretation
- offers good representation of unprintable characters
- byte interpretation may be ASCII, hexadecimal, decimal and binary

Fig. 2-25 Docklight main window

Is data register empty
(is UDRE bit set) ?

NO

Write the byte into
the UDR transmit
data register

YES

 118 Laboratory work 2 – Serial communication - transmission

 The main window of Docklight offers quick access to all of the features. The
command bar contains practically all the necessary commands to configure, open, close
and enable data write to the serial port.

Fig. 2-26 Docklight command bar

 The active serial port along with its current configuration is displayed on the right
side of the bar. In order to modify the COM port or the configuration a double click on
the COM port name (ex COM 2 in Fig. 2-26). The configuration window is displayed in
Fig. 2-27.

Fig. 2-27 Docklight COM port configuration window

 The configuration of the serial port does not imply also the opening of the COM port
for reception and transmission. These operations are made using some of the buttons on
the command bar (Fig. 2-26). The buttons that present the most interest are: Start
Communication, Stop Communication, Keyboard Console On and Clear Communication
Window. These commands are highlighted in this order, from left to right, in Fig. 2-28.

Fig. 2-28 Docklight most used commands

Digital Signal Acquisition and Conditioning 119

 The most important commands found on the command bar are those responsible for
opening and closing the serial COM port. The first two highlighted buttons in the above
figure are responsible for these actions. The opening of the port is activated through the
Start Communication button and the closing of the port through the End Communication
button. At the moment the COM port has been successfully opened, the state is updated
below the button bar and Docklight scripting is ready to receive data through the serial
port which will be displayed in the main window in the currently selected format. The
window may be cleared using the Clear Communication Window. It is important to
mention that opening the communication window will only activate the receive process.
Any typed data in the main window will be discarded. In order to activate the transmission
of data using the keyboard the Keyboard Console On button must the accessed. The status
bar will be updated accordingly.
 The main window of Docklight scripting displays the received and transmitted data
in a strictly defined format. Each operation is preceded by a full timestamp along with a
tag that specified whether it is a transmission ([TX]) or a reception ([RX]). Usually the
transmitted data are colored in blue and the received data in red. The special characters
are also displayed using a simple syntax: the definition of the special character according
to the ASCII table between angle brackets. A sample of a short transaction displayed by
Docklight scripting may be the following snippet.

Code listing 2-7 Docklight scripting communication sample

04.01.2016 12:21:51.575 [TX] – data transmitted from to the microcontroller

04.01.2016 12:21:52.455 [RX] – data received from the microcontroller

 ASSIGNMENT 3: Open Docklight Scripting, configure the port for a BAUD rate
of 9600 bps, 8 bit per character, 1 STOP bit and no parity. Open the COM port and activate
the keyboard transmission feature.
 ASSIGNMENT 4: Write a C library (a c file with a header file) which contains an
initialization function for the UART interface and a function capable of transmitting one
byte over the serial UART interface. The project should then have 3 files, for example:

- Serial.c – the C file containing the implementation of the functions
- Serial.h - the Header file containing the declarations for the function implemented

in serial.c file that need to be exported
- Main.c – the C file containing the main program and function

 The serial port needs to be configured as following: BAUD 9600 bps, 1 stop bit, 8
bits per character, no parity.
 Write a main program that sends the same character over the serial interface once per
second using the previous developed library. Test the program using Docklight scripting.
 ASSIGNMENT 5: Modify the previous assignment in order to communicate at a
BAUD of 115200 bps. Change the settings in Docklight scripting accordingly.
 HOME ASSIGNMENT: Read about Analog to Digital Converters in general. Read
documentation related to the Analog to Digital Conversion peripheral of ATMEGA16.
Make a list with the registers that should be used to configure the ADC to convert a voltage
(between 0V and 3.3V) applied to channel 0. Also make a list of the bits and registers

 120 Laboratory work 3 – Analog to digital conversion. Digital voltmeter

required in order to start a conversion and read the result. Write the formula in order to
transform the data from a 10 bit number to voltage value considering the AVCC voltage
as reference.

2.4 Laboratory work 3 – Analog to digital conversion. Digital voltmeter

 The main peripheral device when dealing with digital signal acquisition is the Analog
to Digital Convertor (ADC). During this laboratory work we will concentrate on the ADC
peripheral module of ATMEGA16.
 The scope of this laboratory work is to familiarize the attendees with analog to digital
conversion. Students will have to develop another small library with basic functions to
control the ADC, similar to the library in the previous laboratory work. The serial library
will also be extended to support the transmission of a string over de serial interface. The
actual finality of this laboratory is a digital voltmeter with the display on Docklight serial
terminal. Practically the microcontroller program has to print the converted and calculated
voltage in mV on the Docklight terminal via the serial interface.
 The analog to digital conversion is a set of operations which transforms an analog
input voltage into a binary code offered as output. This process in performed in 3 steps:
sampling, quantization and binary coding.
 Sampling is the first step of analog to digital conversion and consists into acquiring
values of the analog input usually at periodic moments in time. The values of the samples
are still continuous and belong to an infinite precision interval. The next step, the
quantization, is the one responsible in obtaining finite precision values of the samples.
The final step of the process is the binary coding which practically represents the values
obtained after quantization using numbers represented on a finite number of bits [19].
 The number of discrete values on which an ADC can represent the samples is
indicated by the resolution of the ADC. This parameter is one of the most important
characteristics of an ADC. For example having a resolution of an ADC of 10 bits means
it can convert an analog voltage value into 1024 different levels in an interval of discrete
values from 0 to 1023. The resolution can also be presented in volts introducing the term
called the least significant bit voltage. The LSB represent the minimum change of the
input voltage in order for the output binary code to change. The resolution of the ADC
can then be defined as:

2 1
 (2-2)

Where
FSR – Full Scale Range defines full voltage range of the ADC
n – Represents the number of bits the ADC uses to encode the sample, practically the
resolution in bits.

Digital Signal Acquisition and Conditioning 121

 The Full Scale Range can be defined as follows:

 (2-3)

 Most of the conversions made are for voltages that are referenced to ground (0 V)
thus in this situation the FSR is usually equal to the reference represented by the highest
value of the voltage.
 Having a simple example where the high reference of the ADC is 3.3 V, the low
reference of the ADC is grounded and the resolution of the ADC is 8 bits then we can
calculate the voltage resolution of the ADC:

3.3	
2 1

12.94	 (2-4)

 Practically every increase of the input voltage by 12.94 mV causes the encoded value
of the ADC to change. Practically, in our example, the ADC only “feels” changes of 12.94
mV.
 As state before, the actual output of an ADC is represented by a number which is n
bits wide, with a maximum value of:

2 1 (2-5)

 So, practically, having the output of the ADC of a converted input voltage, denoted
as ADCVALUE, the voltage represented by this discrete value, denoted as VRESULT, can be
calculated as follows:

∙ ∙
2 1

 (2-6)

 Considering our previous example, let us continue by supposing that after the
conversion the ADC gives a result binary represented as 0b01111001 which in
hexadecimal is equal to 0x79 and in decimal as 121. The actual value of the voltage that
the ADC converted (VRESULT) may be calculated (in mv) as follows:

121 ∙
3300	
2 1

121 ∙ 3300
255

1565 (2-7)

 The ATMEGA16 microcontroller has an Analog to Digital converter module which
will be used in order to implement a digital voltmeter during this laboratory work. The
ADC of ATMEGA16 has 8 possible channels for conversion with different reference
voltage selection possibilities. The ADC also supports the possibility for converting
differential signals where the low reference is not considered to be grounded. During these
laboratory works we will not consider differential conversion thus only using channels

 122 Laboratory work 3 – Analog to digital conversion. Digital voltmeter

that have the low voltage reference grounded and the high voltage reference equaled to
the Vcc power line. The maximum resolution of the ADC is 10 bit.
 In order to have a simpler serial communication in the next laboratory sessions the
maximum resolution, which will be used, is of 8 bits, thus only the most significant 8 bits
will be taken into consideration (the lest significant 2 bits will be discarded). Furthermore,
the reference that the ADC will use, should be the AVCC power pin.
 The first aspect that is to be discussed is regarded to the connections that have to be
made. The starting point will be the connection schematic used in the previous laboratory
application for serial communication as presented in Fig. 2-22. Having this as a starting
point the resulted block connection schematic for this laboratory application is presented
in Fig. 2-29:

Fig. 2-29 ADC connection block diagram

 The new connections added to Fig. 1-22, resulting Fig. 1-23, are the following:

- In order to use the ADC, the AVCC pin (pin 30) MUST be connected to the power
supply, in our case to the 3.3V line. Same goes for the ground pin next to it, which,
of course, must be connected to the ground line (pin 31 needs to be connected to
ground)

- The analog input voltage should be connected to one of the ADC input channels,
thus, for simplicity, ADC0 channel 0 was selected in the previous diagram.
Practically, the PA0 pin (pin 40) will serve as ADC0 function and will be
connected to an analog voltage

 The analog voltage, which will be applied to the ADC, can be generated using an
adjustable laboratory power supply. The ground of the laboratory power supply MUST
be connected to the ground of the whole circuit. Another important aspect is that the
analog voltage MUST NOT EXCEED 3.3 V. The interval, in this situation, should be
[0,3.3] V. In order to verify the results, it is recommended that the laboratory adjustable
power supply is able to display the actual voltage that it is applied. If not, then, a real
voltmeter should be used in order to be sure that the 3.3V limit is not exceeded.

ATMEGA16
Header board Peripheral board Host PC

TX

RX

RS‐232

TTL/CMOS voltage levels EIA voltage levels

Pin 10
Vcc

Pin 11
GND

Pin 30
AVcc

Pin 31
GND

Pin 40
PA0
(ADC)

GND3.3V

GND3.3V
Analog
voltage

Digital Signal Acquisition and Conditioning 123

 ASSIGNMENT 1: Make the necessary connections and have the laboratory
supervisor verify them.

 The next aspect, which should be discussed, is related to the software part of the
application which should imply the configuration of the ADC of ATMEGA16, the starting
of the conversion, the collection of the raw data result, the calculation of the actual voltage
in mV and the printing of the result on the serial terminal.

 ASSIGNMENT 2: Read the documentation regarding the ADC module of
ATMEGA16 concentrating on the registers. Make a list with all the registers that should
be used for configuring the ADC module. Furthermore, make separate lists of the registers
used for starting a conversion, for waiting for the conversion to be finished and for
collecting the result. Define the algorithm for both operations (configuration, conversion).
The ADC should be used without interrupts, having completion checked by polling and
with a resolution of 8 bits.
 The ADC of the ATMEGA16 is not hard to use. It has a small number of registers
and the operation is almost trivial. The first aspect to be considered is the configuration
of the direction of the pins involved in ADC conversion. As stated before, the ADC has 8
channels for conversion and they are all mapped on PORTA of the microcontroller. In
this case, the programmer has to be assured that the direction of the pins involved in
conversion is set to input.
 The configuration of the ADC is mainly done by writing the necessary bits in
ADCSRA register which is the ADC Control and Status Registers. The most important
bit that needs to be set, prior to any usage of the ADC, is the ADEN bit which enabled the
ADC module. Other bits which interest us on this register are the ADPSx bits which form
the clock division factor. As a starting point, a divisor of 8 should be used having the bits
equaled to the following values: ADPS2 = 0, ADPS1 = 1, ADPS0 = 1. Practically, along
with the direction configuration, these writings into the ADCSRA register should suffice.
A flowchart of the function that implements the configuration of the ADC module may
be found in Fig. 2-30:

 Fig. 2-30 ADC initialization flowchart

Set the pin directions for PA0
as input (ADC0)

Enable the ADC (ADEN = 1 in
ADCSRA register)

Set the clock divisor (in
ADCSRA register)

 124 Laboratory work 3 – Analog to digital conversion. Digital voltmeter

 The slightly complicated part of the ADC is implementing a method to start the
conversion, wait until the conversion is complete and collect the result. The first step is
writing the ADMUX register by selecting the channel for conversion and selecting the
voltage reference (AVCC in our case). Giving that we will use a resolution of 8 bits,
having a result formed out of the most 8 significant bits of the resulted conversion
(ignoring the least 2 significant bits) the Left Adjusted Result option for the conversion
should be used. This can be configured by writing to logic 1 the ADLAR bit in ADMUX
register.
 After configuring the ADMUX register, the conversion can be started by writing
ONLY the ADSC (ADC Start Conversion) bit in ADCSRA register. This bit should also
be used for checking whether the conversion has finished. According to the
documentation, after this bit is set to logic 1, the conversion begins. After the conversion
is finished this bit is reset to logic 0, by hardware, signaling the completion of the
conversion.
 When the conversion is finished the only thing remaining is collecting the result.
Giving the fact that we used the Left Adjusted Result option (by setting ADLAR = 1) the
8 bit result needed can be obtained by reading only the ADCH register (most significant
part of the ADC data register). The flowchart for reading a sample from one of the ADC
channels may be found in Fig. 2-30:

 Fig. 2-31 ADC conversion logic

Write the channel to be
converted in ADMUX

Set the voltage reference (in
ADMUX)

Set the Left Adjust Result
option (in ADMUX)

Start the conversion
(set ADSC in ADCSRA)

Has the conversion finished ?
Is the ADSC bit in ADCSRA set?

Read the ADSC bit in ADCSRA

NO

Read result from
ADCH

YES

Digital Signal Acquisition and Conditioning 125

 ASSIGNMENT 3: Modify the serial communication library developed in the
previous laboratory work by adding an additional function that is able to send a C string
(a NULL terminated character array) over the serial interface. Modify the main program
in order to send “Hello World!” over the serial interface once per second. The function
prototype should be:

Code listing 2-8 Send string function prototype

void SendString(char *string);

 Being a NULL terminated string use the strlen function from string.h library to obtain
the length of the string.

 ASSIGNMENT 4: Write a C library (a c file with a header file) which contains an
initialization function for the ADC mode and a function capable of starting the conversion
and reading one raw sample value from the ADC on channel 0. Add the library to the
project developed in the previous laboratory work. The project should now contain the
following:

- Serial.c – the C file containing the implementation of the functions
- Serial.h - the Header file containing the declarations for the function implemented

in serial.c file that need to be exported
- Adc.c – the C file containing the implementation of the ADC functions (init

function and read data function)
- Adc.h – the header file containing the declarations for the functions implemented

in adc.c file that need to be exported to the rest of the program
- Main.c – the C file containing the main program and function

 The communication parameters should be the last used in the previous laboratory
application (BAUD 115200 bps, 8 bit data, no parity, 1 stop bit)
 The main program should mainly read one sample from the ADC, calculate the
resulted voltage and print the result on a new line containing VOLTAGE = <value> mV.
Make use of the standard sprintf function in order to print into a string which should be
sent over the serial line using the required function in the serial library. The program
should print the voltage once per second. The newline is obtained by inserting the
characters ‘\r’ and ‘\n’.
 Do not use float or double when calculating the resulting voltage value. Use only
integers. ATMEGA16 does not have hardware support for floating point values.
 Use Docklight scripting, as in the previous laboratory application, to view the result.
 The flow of the program should be the following:

 126 Laboratory work 4 – Minimal 2 channel oscilloscope

Fig. 2-32 Digital voltmeter program flow

2.5 Laboratory work 4 – Minimal 2 channel oscilloscope

 The first product, close to a digital oscilloscope, will be outcome of this laboratory
and may be even considered an important milestone. During this laboratory work a second
channel will be added for conversion in the ADC library previously developed.
Furthermore, the data collected from the ADC will be stored in buffers, one buffer for
each channel. The buffers will be then sent over the serial interface to the PC to be
processed. This implies the addition of new functions to the serial interface library and
also the development of a short protocol to encapsulate the data. The display of the
oscilloscope will be represented by a dedicated application on the PC which displays the
data received from the serial interface. In general lines, these will be the aspects discussed
within this laboratory work.
 The first step into implementing the basics for our 2 channel oscilloscope is to first
acquire signals on 2 channels (currently we have only one channel of the ADC working)

Initialize serial interface

Initialize the ADC

Read one value from the ADC
channel 0

Calculate the resulting voltage
value

Use sprintf to compose the
string containing the voltage
value (that should be send
over the serial interface)

Send the string over the serial
interface

Wait aprox 1 second using
delays

Digital Signal Acquisition and Conditioning 127

and then to store the gathered data into buffers. Before storing the data we need to enable
the conversion on another channel of the ADC. This can be done simply by writing the
channel number that will be converted into the ADMUX register. In the previous
laboratory work the channel was hardcoded in the read data function (in ADMUX
register). So, practically the only change would be to modify the read data function to
receive the channel to be converted as parameter. The conversion on the 2 channels do
not have to be simultaneous, thus only the modification of this function should suffice.

 ASSIGNMENT 1: Modify the read data function in the ADC library developed in
the previous laboratory work to support specifying which channel to be converted with
the help of a dedicated parameter. An example prototype of this function should be:

Code listing 2-9 ADC read data function prototype with channel number as argument

uint8_t ADC_ReadData(uint8_t channel_number);

Also adapt the main program to print both samples on the Docklight Scripting serial
terminal. Loose the calculation for the actual voltage and print the 2 acquired samples
from the 2 channels as raw numbers, preferable in hexadecimal.

 The next step is to store the gathered data from the channels into 2 separate buffers,
one buffer for each channel. The 2 buffers should be equal in size. The size of the buffers
should be configurable at compile time using a define directive. After the buffers are full,
they should be sent over the serial interface to be received by a dedicated application on
the PC which will display the signals as an oscilloscope screen would do. This PC
application will be presented shortly.
 In order for the PC application to be able to correctly use the data from the
microcontroller, some transmission protocol needs to be used on top the UART protocol.
The data that the microcontroller sends (the 2 buffers containing the samples from the 2
channels) needs to be encapsulated in a certain manner. The frame that encapsulates the
data must have the following structure:

Description synchronization pattern buffer size ch1_buffer ch2_buffer ch frequency

size <1> <1> <1> <1> <1> <1> <CNT> <CNT> <1> <1>
value 0xA0 0xA3 0xB0 0xB3 CNT_HI CNT_LO ch1_buffer ch2_buffer F_LO F_HI

 Table 6 Oscilloscope to PC communication protocol

 Let us have a look on the protocol encapsulation presented in Table 6. The frames
described above are the only frames accepted by the PC viewing software. No exceptions
are permitted.
 The first field in the frame is represented by the four bytes forming the
synchronization pattern. This pattern is fixed and it is used by the PC software to identify
the beginning of a data frame. These 4 bytes must be used as they are. The following 2
bytes contain the buffer size split into a most significant byte and a least significant byte.
The buffer size field defines how long are the buffers containing the acquire channel data.
Each buffer has the size defined by the buffer size field. So, practically the amount of data

 128 Laboratory work 4 – Minimal 2 channel oscilloscope

to be transmitted in total is twice the value of buffer size. After the buffer size, the actual
data is transmitted: first the values for channel 1 (the number of the values is defined by
the buffer size value) then the values for channel 2 (again the number of the values is
defined by the buffer size value. After the data buffers are transmitted an additional 2
bytes are required containing the frequency of one of the channels that will be calculated
later in another laboratory session. For now, consider these 2 byes as zero.

 ASSIGNMENT 2: Modify the serial interface library developed in the previous
laboratory works by adding a function that received as parameter a pointer to the data
buffer of channel 1, a pointer to the data buffer of channel 2 and the size of the buffers
which is able to encode the data as previously described and send it over the serial
interface.
 A possible prototype for this function could be:

Code listing 2-10 Data encode and send function prototype

void UART_SendOscData(uint8_t* channel_1_buffer, uint8_t* channel_2_buffer,
uint32_t buffer_size);

 ASSIGNMENT 3: Implement a main program that using an infinite loop it gathers
data from the ADC from both channels and stores the data in the corresponding buffer for
each channel. The buffers must only contain raw data from the ADC without any
transformations. The transformation as used in the voltmeter application should have
already been eliminated. Both buffer must have the same size.
 After the buffers are full, the program uses the serial interface library to encode and
send the gathered data over the serial interface to be viewed on the PC software. The flow
of the program should be as presented in Fig. 2-33:

Digital Signal Acquisition and Conditioning 129

Fig. 2-33 Simple 2 channel oscilloscope program flowchart

 In order to test the newly developed oscilloscope the PC software that will be used
as a display and control panel for the oscilloscope is needed. The PC software, called
APND, is a simple, one window .NET application capable in both displaying the signal
wave forms transmitted by the microcontroller over the serial interface, but can also be
used to send 2 byte long words over the serial interface to the microcontroller. This latter
feature will be used in the following laboratory works.

Initialize serial interface

Initialize the ADC

Read one value from the ADC
channel 0

Store value from ADC channel
0 into channel 0 buffer

Read one value from the ADC
channel 1

Store value from ADC channel
1 into channel 1 buffer

Are the buffers full?

NO

Encode and send the data
through the serial interface

YES

 130 Laboratory work 4 – Minimal 2 channel oscilloscope

 Our current focus is on using the APND software to display the signal wave forms.
In order for the APND software to display the waveforms, the data must be sent in the
correct protocol encapsulation as presented above.
 The main window of the application is presented in the following figure:

Fig. 2-34 APND software main window

 As it can be seen in Fig. 2-34 the APND software is quite simple. The COM which
will be connected to the embedded system, our microcontroller, can be selected from the
combo-box. The COM port list can be refreshed by using the Refresh button. After the
correct COM port has been selected, the Connect button should be pressed in order to start
the communication between the microcontroller and the APND software. If the correct
frames are received from the microcontroller the waveform will be displayed in the graph
as presented in Fig. 2-35

Digital Signal Acquisition and Conditioning 131

Fig. 2-35 APND software main window with waveforms

2.6 Laboratory work 5 – Oscilloscope trigger

 In the previous laboratory work the first basic implementation of the oscilloscope
was made. The basic oscilloscope, in this moment, is only able to acquire the signal and
display it on the PC applications without any processing. The first feature of the
oscilloscope that should be implemented is the trigger sequence. The main role of the
trigger is to synchronize a periodical signal on the display of the oscilloscope. Without
the trigger, the signal on the oscilloscope has a “moving” behavior. The idea of the trigger
is that the oscilloscope always begins to display the signal from the same sample, thus
making it stable on the display.
 On a real oscilloscope the trigger is available only on one channel at a given moment
in time, but it can be configurable into being on any of the channels. Furthermore, the
trigger may be set on the positive edge of the signal or on the negative edge. The most
important characteristic is that the trigger is able to synchronize only periodical signals.
 The actual coding that will be done for this laboratory work is more than simple. No
more than 2 or 4 lines of code have to be written. The actual aspect of this laboratory work
is to present the methodology and analysis on how the signal synchronization is made,
thus how to deduct the code lines to be written and where.

 132 Laboratory work 5 – Oscilloscope trigger

 Let us start by explaining the data displayed by the PC application. Such a waveform
is presented in Fig. 2-36.

Fig. 2-36 Simple waveform

 In Fig. 2-36, we can observe that the y axis is named “Sample value”. On this axis
the actual values of the samples are noted, not transformed into volts. This is done in order
to simplify all the explanations and to make things easier to observe. The minimum values
is denoted at V_LO which is 0 and the maximum value is denoted as V_HI with a value
of 255, being the maximum value of a sample represented as an 8 bit unsigned integer.
Another notation is made on the x axis which is the middle value of the sample denoted
as V_M with the sample value of 128. The x axis is a discrete time axis.
 An important observation is that in the moment the microcontroller begins to acquire
the first sample of data which is saved into the buffer, the actual position of the signal is
unknown. In this moment we have no information from what point the acquisition of the
signal begins: the acquisition may begin on the rising edge of the signal or on the falling
edge. This is practically the reason why the signal is not synced: because the starting point
of the acquisition is different at each startup of the buffer that stores the samples of the
signal.
 In order to realize the synchronization we have to make sure that the acquisition and
storing into the buffer begins from the same position of the waveform, more exactly from
the same sample on the same edge. Having this in mind, if, for example, the buffer always
starts with sample of value 128 on the rising edge, them every time the buffer is displayed
it is perfectly synced on the display of the oscilloscope (the graph of the APND software).
Same should go for the falling edge. We can state that the triggering procedure is
depended on the edge, falling or rising, as it can be seen on any real oscilloscope available
on the market. In the following paragraphs, the signal synchronization will be analyzed
considering the 2 situations: falling edge and rising edge.

V_LO=0

V_HI=255

V_M=128

Sample
value

Digital Signal Acquisition and Conditioning 133

 The first case that will be analyzed is the case where we want to use synchronization
on the falling edge. This actually means that the acquisition and storing will begin from
the same sample value on the falling edge. This results in the fact that the signal will be
displayed starting from a falling edge with the same starting point (value). The
explanations are much easier by taking a look on the following figure:

Fig. 2-37 Negative edge trigger using middle value

 In each analysis we must consider the fact that in the moment we want to start storing
the data in the buffer we do not know where the acquisition starts in respect to the
waveform. The acquisition may start anywhere. Having this in mind, we must practically
ignore all the samples until we obtain the sample presented in Fig. 2-37 and denoted with
the red dot as “Signal synced”. The ignored samples are the samples contained in the red
hash of the signal. Starting the acquisition at this point and more important starting to
store the data into the buffer from this point, after the buffers are full and the data is sent
to the APND software, the signal will always be displayed from the same point and thus
it will be synchronized on falling edge.
 The question to arise is how to practically ignore those samples. First, giving the fact
that we don’t know the starting point of the signal in the moment of acquisition we must
first reach our point 0, the origin of our axis. The value that we will use for comparison is
the middle value, V_M. So, in the first step, we will ignore all values of the samples that
are lower than V_M. Having these values ignored, we will find ourselves on the situation
where we may be practically in the origin prior to the start of the rising edge. Our primary
objective is the synchronization of the signal on the falling edge. In this case the next
group of samples to be ignored are the samples which are higher than the value of V_M.
After all these samples are ignored, we can begin the acquisition and storing the data into
the buffer and we can observe that we have a synchronized signal on the display. A
pseudo-code representation of the algorithm can be found in the following code snippet:

V_LO=0

V_HI=255

V_M=128

Sample
value

Ignore samples Store samples until buffer full

Signal synced

 134 Laboratory work 5 – Oscilloscope trigger

Code listing 2-11 Pseudo-code for negative trigger

while (current sample is below V_M)
{
 ignore current sample;
 get next sample;
}
while (current sample is above V_M)
{
 ignore current sample;
 get next sample;
}

while (buffers_are_not_full)
{
 get samples;
 store sample;
}

SendBuffersOverSerialInterface;

 The same algorithm goes for the trigger on the rising edge of the signal. Having the
same approach, we will use the next figure:

 Fig. 2-38 Positive edge trigger using middle value

V_LO=0

V_HI=255

V_M=128

Sample
value

Ignore samples Store samples until buffer full

Signal synced

Digital Signal Acquisition and Conditioning 135

 Practically in order to achieve positive triggering we can use the same algorithm. The
approach though is slightly different. First we must assure that we have reached the
negative synchronization then ignore half a period of samples in order to achieve the
positive sync. More exactly, we first have to ignore all the samples which are above the
middle V_M sample value. Then, the next step is to ignore the sample which are below
the middle V_M sample value. After this, we can be assured that we have an exact starting
point, which in the figure above is represented by the red dot and arrow pointing to it,
denoted as “Signal Synced”. The next and final step is to start the actual acquisition and
storing, the same way we did in the previous situation. The pseudo-code algorithm for the
positive triggering is almost identical to the prior situation:

 Code listing 2-12 Pseudo-code for positive trigger

while (current sample is above V_M)
{
 ignore current sample;
 get next sample;
}
while (current sample is below V_M)
{
 ignore current sample;
 get next sample;
}
while (buffers_are_not_full)
{
 get samples; store sample;
}
SendBuffersOverSerialInterface;

 Having an analysis over Code listing 2-11 and Code listing 2-12 we can identify that
the only difference is that the first 2 while statements are switched between themselves.
Practically, behind all the explanations this is the only noticeable difference.
 In theory, the algorithm presented above is applicable and it should be enough. In
practice though certain adapting is needed. The main reason is the noise which influences
the ADC and also the errors the ADC conversion itself. The result of this errors and
influences is that sometimes the middle value is not stable and because of this the
triggering may change without reason. Furthermore, it is possible that one implemented a
positive trigger but on the display a negative triggered signal is displayed. All of this is
because the instability of the middle value. This can be corrected by using a middle
interval instead of a middle value, an interval that, of course, contains the middle value.
The middle interval can be considered an instability interval and may be considered
similar to the transition interval from TTL circuits (the interval in volts where the circuit
is not sure about the logical value). This situation is presented in the following figure:

 136 Laboratory work 5 – Oscilloscope trigger

Fig. 2-39 Simple waveform with instability interval

 As presented Fig. 2-39 the instability interval is defined by [VT_LO; VT_HI]. The
V_M middle value has to be contained by the interval. The actual values of the interval
margins cannot be defined theoretically. They are usually hardware and noise depended
so practically they can only be found empirically. In order to obtain good result in practice
we need to apply the instability interval to the situations described in previous paragraphs,
more exactly to adapt the situations in Fig. 2-37 and Fig. 2-38.
 Applying the interval on the first situation, the negative triggering, the resulted figure
will be:

Fig. 2-40 Negative edge trigger using instability interval

 The algorithm also needs to be adapted. The adaptation is made by practically
replacing the V_M middle value with the instability interval. In our first approach, the
first step was to ignore all the values that are lower than the V_M middle value. This will

V_LO=0

V_HI=255

V_M=128

Sample
value

VT_HI

VT_LO

V_LO=0

V_HI=255

V_M=128

Sample
value

VT_HI

VT_LO

Ignore samples Store samples until buffer full

Signal synced

Digital Signal Acquisition and Conditioning 137

be adapted into ignoring all the values that are lower than VT_HI value. The next step
that was to ignore all the values that are higher than the value of V_M will be translated
into ignore all the values that are higher than VT_LO. Using this replacements the
algorithm may be adapted as in the following paragraph.
 First, giving the fact that we don’t know the exact starting point of the signal at the
moment of the acquisition, we must first reach our point, the origin of our axis in this case.
The values that will be used for comparison are the margins of the instability interval,
VT_LO and VT_HI. In the first step, we will ignore all the values of the samples that are
lower than VT_HI. Having these values ignored we will find ourselves on the situation
where we may be practically in the origin prior to the start of the rising edge. Our primary
objective is the synchronization of the signal on the falling edge. In this case the next
group of samples to be ignored are the ones which are higher than the VT_LO values.
After all these samples are ignored the negative trigger is accomplished.
 The adapted pseudo-code for negative triggering can be found in the following code
snippet:

 Code listing 2-13 Pseudo-code for negative trigger with instability interval

while (current sample is below VT_HI)
{
 ignore current sample;
 get next sample;
}
while (current sample is above VT_LO)
{
 ignore current sample;
 get next sample;
}
while (buffers_are_not_full)
{
 get samples; store sample;
}
SendBuffersOverSerialInterface;

 Same idea goes for applying the instability interval for the positive edge triggering.
All the comparisons with the fixed V_M middle values will be replaced with the instability
interval as presented in the following diagram:

 138 Laboratory work 5 – Oscilloscope trigger

Fig. 2-41 Positive edge trigger using instability interval

 The approach is almost the same. Firstly, we must assure we have reached the
negative synchronization, then ignore half a period of samples in order to achieve the
positive sync. More exactly, we first have to ignore all the samples which are above the
value represented by VT_LO. Then, the next step is to ignore the sample which are below
the value represented by VT_HI. After this, we can be assured that we have an exact
starting point which in the figure above is represented by the red dot and arrow pointing
to it, denoted as “Signal Synced”. The next and final step is to start the actual acquisition
and storing, the same way we did in the previous situation. The adapted pseudo-code
could look similar to the following code snippet:

 Code listing 2-14 Pseudo-code for positive trigger with instability interval

while (current sample is above VT_LO)
{
 ignore current sample;
 get next sample;
}
while (current sample is below VT_HI)
{
 ignore current sample;
 get next sample;
}
while (buffers_are_not_full)
{
 get samples;
 store sample;
}
SendBuffersOverSerialInterface;

 An important observation is that, the triggering on any real oscilloscope is only
available on one channel at the same time, from obvious reasons, but may be changed
from one channel to another. The same approach will followed here. The trigger can only

V_LO=0

V_HI=255

V_M=128

Sample
value

VT_HI

VT_LO

Ignore samples Store samples until buffer full

Signal synced

Digital Signal Acquisition and Conditioning 139

be applied on one of the channels but features for changing the channel for triggering
should be considered. The algorithm is the same for any of the channels just the proper
samples should be used (for channel 1: triggering only samples from channel 1 should be
used for comparison; for channel 2: triggering only samples from channel2 should be used
for comparison).
 The adapted version of the oscilloscope program presented in Fig. 2-33 with the
triggering on negative edge could be the following:

Fig. 2-42 A 2 channel oscilloscope program flowchart with negative edge trigger using instability interval

 The same algorithm and approach used for positive edge triggering could have as
result the adapted version of the program flow presented in Fig. 2-33 as presented in the
following diagram:

Initialize serial interface

Initialize the ADC

Read one value from the ADC
channel 0

Store value from ADC channel
0 into channel 0 buffer

Read one value from the ADC
channel 1

Store value from ADC channel
1 into channel 1 buffer

Are the buffers full?

NO

Encode and send the data
through the serial interface

YES

Read one value from the ADC
channel 0

Is current sample
below VT_HI ?

Read one value from the ADC
channel 0

Is current sample
above VT_LO ?

YES

YES

NO

NO

 140 Laboratory work 5 – Oscilloscope trigger

 Fig. 2-43 A 2 channel oscilloscope program flowchart with positive edge trigger using instability
interval

 The only aspects left to be discussed is the choosing of the margins of the instability
interval. As stated before these values have to contain the V_M middle value and are
chosen empirically. A starting point could be to use the following values:

Table 7 Starting point values for instability interval margins

VT_HI 140
VT_LO 110

 ASSIGNMENT 1: Implement triggering on the already existing code for the simple
2 channel oscilloscope. Implement both positive and negative triggering. The
positive/negative triggering should be chosen at compile time based on a define statement.
Use only a define statement! Do not use code exclusion statements (based on ifdef, ifndef,
endif statements)! Furthermore, using defines statements, give the possibility of choosing
the channel on which the synchronization should be made.

Initialize serial interface

Initialize the ADC

Read one value from the ADC
channel 0

Store value from ADC channel
0 into channel 0 buffer

Read one value from the ADC
channel 1

Store value from ADC channel
1 into channel 1 buffer

Are the buffers full?

NO

Encode and send the data
through the serial interface

YES

Read one value from the ADC
channel 0

Is current sample
above VT_LO ?

Read one value from the ADC
channel 0

Is current sample
below VT_HI ?

YES

YES

NO

NO

Digital Signal Acquisition and Conditioning 141

 OPTIONAL ASSIGNMENT: Push the limits of your oscilloscope! Find the limits!
Use the oscilloscope triggered on one of the channels and find the maximum frequency
that it can display without deforming the waveform. Try to the change the input frequency
of the ADC by changing the divisor and find out if better results may be obtained
 HOME ASSIGNMENT: Read about the TIMER module of ATMEGA16 focusing
on 16 bit TIMER1. Concentrate only on the free running capability of the timer. Make a
short list with the registers and bits that should be used.

2.7 Laboratory work 6 – One channel frequency calculation

 The old style oscilloscopes were basically able only to display 2 signals and make
the trigger on one of them, of course, along with the changing of the time base. The new
generation of oscilloscopes have measuring capabilities. One of the most important
measuring capability is the measurement of the frequency of the signal. This aspect will
be treated in this laboratory work.
 Our current state of the oscilloscope is that it is capable of 2 channels waveform
display with triggering on either of the channels and either on positive and negative edge.
The next connected application should be to extend the features of the oscilloscope into
having the measurement of the frequency embedded into the project. The frequency
measurement should only be considered for the channel that is used for triggering. A
different approach is much more difficult. Measuring the frequency of the signal is
translated into measuring the period of the signal. The period T of the signal is depicted
in the following figure:

Fig. 2-44 Period definition

V_LO=0

V_HI=255

V_M=128

Sample
value

T

 142 Laboratory work 6 – One channel frequency calculation

 In order to accomplish this task another peripheral device of ATMEGA16 must be
used: the TIMER module. In order to have the highest precision the TIMER1 peripheral
module of ATMEGA16 will be used. The TIMER1 module has the special feature that it
is 16 bit wide.
 The timers of ATMEGA16 have a lot of operating modes: compare match, capture,
PWM and of course free run. Giving the fact that we only want to measure software events
the free running operating mode will be used. This is the simplest mode of using the timer,
thus it is used only at the level of a counter. In order to start the TIMER module of
ATMEGA16 the clock source needs to be specified. A TIMER of ATMEGA16 once it
has its clock source defined it starts counting. The counting is stopped only when the clock
source it is disabled.
 In order to have the best precision, the TIMER1 module will be used, which is a 16
bit wide TIMER. The rest of the timers of ATMEGA16 are only 8 bit which are not
enough for our measurements. Giving the fact that all the peripheral modules of
ATMEGA16 are designed to be working 8 bit wide, in order to have 16 bit peripherals,
the word is divided, usually, into two 8 bits registers, with a most significant byte and a
least significant byte. Same goes for the TIMER1 module. So, the timer counter register,
which contains the counting value, is also divided into two 8 bit wide registers.
A two read operation will be required in order to obtain the full value.
 Practically, in order to obtain the current value of the timer counter the TCNT1H and
TCNT1L should be used. The reset of the timer counter implies to set the TCNT1H and
TCNT1L to zero. There is restriction that should be taken into account: when reading the
timer counter registers the TCNT1L must be read first and TCNT1H last. This observation
may be found in the documentation of ATMEGA16.

 ASSIGNMENT 1: Implement a timer library that provides an initialization function
for the timer in free running mode which resets and starts the timer, a function that stops
the timer and a function that returns the current value of the timer counter. The possible
function prototypes could be the following:

 Code listing 2-15 Timer library function prototypes

void start_timer(void);
void stop_timer(void);
uint16_t get_timer_value(void);

The library should have the following files (as the previous developed libraries have):

- Timer.h – a header file containing only the function prototypes
- Timer.c – a C code file containing the implementation of the functions defined in

the header file.
 The measurement of the period/frequency of the signal is dependent on what kind of
triggering is used: positive or negative. Moreover, the measurement will only work on the
signal that is triggered.
 A real oscilloscope is capable in measuring the frequency of a signal even if it is not
the one the triggering is made on. The algorithms for this kind of measurement are
complicated thus this situation will not be considered.

Digital Signal Acquisition and Conditioning 143

 The triggering edge is necessary to be known when measuring the frequency of the
signal because the method that will be used is based on the signal crossing the edges of
the instability interval defined in the previous laboratory work. We will analyze both
situations.
 The first situation is represented by the measuring of the frequency of the signal
triggered on its negative edge. The discussion will be based on Fig. 2-45:

Fig. 2-45 Frequency measurement on negative edge triggering

 These easiest method for measuring the frequency of the signal is add a simple finite
state machine into the oscilloscope program developed so far. In Fig. 2-45 three states can
be distinguished. State S0 is practically in the moment the signal has obtained the trigger,
more exact in the moment the actual acquisition and storing of the signal begins. The idea,
from this point on, is to let the timer run until a complete period of the signal has passed,
this being the moment the timer should be then stopped and the counter value read in order
to make the necessary calculations.
 The obvious question that arises is how to determine that a complete period the signal
has passed? Now that we have the starting point of the period of the signal we can obtain
the whole period of the signal first by detecting the negative alternation and then
determining the high alternation. The low alternation is determined by waiting while the
signal is below VT_HI. The determination of the low alternation of the signal is the
moment when switching from state S0 to state S1. In finite state machine will remain in
state S1 until the high alternation of the signal has passed. This is found by waiting until
the signal is below VT_LO value. When this condition is satisfied the finite state machine
will switch to state S2. This state is responsible for the stopping of the TIMER and also
for the reading of the actual counting value of the timer. The last operation that should be

V_LO=0

V_HI=255

V_M=128

Sample
value

VT_HI

VT_LO

Ignore samples Store samples until buffer full

Signal synced

Start
timer

wait while
low alternation

wait while
highalternation

Signal period

Stop timer
Get period

S0 S1 S2

 144 Laboratory work 6 – One channel frequency calculation

made is to calculate the period of the signal by using the newly obtained counter value
divided by the frequency of the timer (which is the same as the microcontroller’s if no
pre-scaler is applied).
 Same algorithm, with minimal changes, may be applied in order to calculate the
frequency of the triggered signal synchronized on positive edge as presented in the figure:

Fig. 2-46 Frequency measurement on positive edge triggering

 As in the previous case, the starting point, state S0, is represented by the moment we
have the signal synchronized, more exact, the moment the acquisition and storing of the
signal begins. Same as in the previous situation state S0 marks the start of the timer. The
following period of time, before switching to state S1, is represented by the fact that we
must wait for the positive alternation of the signal. Practically we must wait until the
signal is above VT_LO. The moment the signal goes below VT_LO the finite state
machine can switch to S1 state. The next period of time covers the waiting for the negative
alternation of the signal which is represented by waiting until the signal is below VT_HI.
Immediately after the signal goes above VT_HI the state machine may switch to state S2.
This state is again the final state which is responsible for stopping the timer, retrieving the
value of the counter and the calculation of the actual period by dividing it by the frequency
of the timer.
 Giving the fact that ATMEGA16 does not have floating point support, it is best to
make the necessary calculations as integers. In order to do this, the value of the timer
counter can be multiplied by 1000 and the value of the frequency in hertz may be divided
by 1000 thus obtaining the value of the period of the signal in microseconds as presented
in the following formula.

V_LO=0

V_HI=255

V_M=128

Sample
value

VT_HI

VT_LO

Ignore samples Store samples until buffer full

Signal synced

Start
timer

wait while
high alternation

wait while
low alternation

Signal period

Stop timer
Get period

S0 S1 S2

Digital Signal Acquisition and Conditioning 145

∙ 1000
_

1000
 (2-8)

 The final step is to encode the calculated period into the protocol used to send the
date to the PC application. As presented in Laboratory work 4 – Minimal 2 channel
oscilloscope, the protocol has 2 bytes for the channel period at the end of the frame. The
expected format should be a 2 byte values encoded as most significant byte first.
Therefore, a limitation is worth mentioning: the calculated signal period must not exceed
value 65535, the maximum value represented by a 2 byte integer. Therefore, the maximum
period of a signal would be 65535 us – 65.5 ms.

 ASSIGNMENT 2: Implement signal measurement for both channels and on both
positive/negative trigger situations. Differentiate the cases with preprocessor define
statement. The situation should be chosen at compile time. Add the calculated value of
the signal period to the communication protocol and visualize the value on the APND PC
application.
 HOME ASSIGNMENT: Read again the documentation referring to the UART
serial communication focusing on the reception. Write a function capable on waiting for
a byte on the serial interface and returning it after it has been received. Furthermore, find
out on how the reception can be used as interrupt source. The final goal is to implement
the UART serial reception using interrupts.

2.8 Laboratory work 7 – Serial communication - reception

 This laboratory work is the second laboratory work which concentrates on UART
serial communication. This laboratory work is also practically isolated from the previous
assignments. The application that will be implemented is a serial echo, an application that
waits for a byte to arrive on the serial line and sends it back afterwards. There will be 2
approaches: one to implement a blocking receiver function that waits for a byte and returns
it after arrival and another approach to use interrupts to be notified on the arrival of one
byte over the serial interface. The latter method will be than integrated into the
oscilloscope application during the next laboratory work.
 The idea of this lab work is to extend the serial library with receiving possibilities
first by using a blocking polling method and then using the interrupt system.
 In Laboratory work 2 – Serial communication - transmission we had configured the
UART module of ATMEGA16 at a BAUD of 115200 (as the final version), 8 bit wide
data word, no parity and 1 stop bit. Furthermore, the library supports the transmission of
both raw bytes and strings. The library also contains the necessary functions for encoding
and sending the data frame recognized by the APND PC software. This library will be
used as a starting point and it will be completed with reception. The initialization of the
UART module in this library was designed to also enable the receiver. This can be verified

 146 Laboratory work 7 – Serial communication - reception

by checking that the RXEN bit in UCSRB register is set to logic 1. So, practically all the
initializations have been made. The only operation left to be implemented is the actual
reception of one byte over the serial line.
 The function that is responsible for the serial reception should be blocking, thus
waiting for a byte to arrive over the serial line into the receive buffer. This information
can be extracted from the RXC (Receive Complete) bit in the UCSRA register. This bit is
set to value logic 1 when unread data is available into the receive buffer. For the rest of
the time this bit is set to logic 0. Using this information we can state that this is the most
important status bit when implementing the reception. Having this into consideration, the
reception function flow chart diagram may be the following:

Fig. 2-47 UART receive flowchart

 It is important to mention, in this case, that the register named UDR is used for
transmitting data over the serial line (transmit register) but it is also used for receiving the
data that has arrived over the serial line (receive register). It is important for the attendees
to distinguish these aspects. Even though it has the same name, there are practically 2
registers which are accessed by the same name. The difference is the access method. When
reading the register named UDR, the receive register is actually accessed. When writing
the register named UDR, the transmit register is actually accessed. This is normally
handled by hardware.

Is data available in the receive
register UDR

(is RXC bit set) ?

NO

Read byte from UDR
receive register

YES

Return byte

Digital Signal Acquisition and Conditioning 147

 The actual function that should implement the flow chart described in Fig. 2-47
should have the following prototype:

 Code listing 2-16 UART receive byte function prototype

uint8_t UART_ReceiveByte(void);

 It is again important to mention that the receive function, as presented in Fig. 2-47
and in Code listing 2-16, is blocking until a character is received, which means that the
execution of the microcontroller is halted until a character (byte) is received over the serial
line.

 ASSIGNMENT 1: Implement the function responsible for receiving a byte over the
UART interface according to the explanations above. Add to function into the already
developed serial library.

 The easiest method to test this function is to implement a trivial serial echo program.
This program practically waits for a character to be received over the serial interface and
after it has arrived it is sent back over the serial interface, thus the name “echo” is justified.
The actual main loop of the microcontroller should implemented according to the
diagram:

 Fig. 2-48 UART echo main program loop

 ASSIGNMENT 2: Implement the UART echo main program used to test the
receiver function. In order to test this echo program open the Docklight Scripting
software, connect to the serial port the microcontroller is connected to and send character
over the serial line. In order for the transmission to be enabled in Docklight Scripting, the
“Keyboard Console On” button needs to be pressed or the Tools -> Keyboard Console On
menu needs to be accessed. The shortcut key for this operation is CTRL+F5. After the
transmission is enabled you can write the characters into the main window using your
keyboard. A successful test of the program and receive function is when a transmitted
character is returned back to the Docklight Scripting software.
 The next aspect to be discussed in this laboratory work is how to transform the echo
application to work using interrupts. The transmission will be left the way it is. The

Initialize UART interface

Read byte from UART
interface

Send received byte back
through UART interface

 148 Laboratory work 7 – Serial communication - reception

reception is the actual operation that is most blocking and must be transformed in order
to be interrupt based.
 An interrupt is a procedure which interrupts the normal program execution of the
microcontroller in order to serve an external event of the microcontroller’s core. The
serving is done by “calling” an interrupt service routine where the necessary code must
be found in order to treat the event. The call of the interrupt service routine is NOT done
by the programmer, but it is done by the core itself. The interrupt service routine is
practically a normal function that is called by the core when an external event occurs.
After the interrupt service routine finishes its execution the program returns to its code
that was executed before the interrupt service routine was called.
 It is important to mention that the normal code being executed by the
microcontroller’s core has absolutely no knowledge that it was interrupted. Most
microcontrollers have the possibility to use more than one interrupt service routine.
Usually each interrupt source may have its own interrupt service routine. An interrupt
source may be a timer module, an SPI interface or, in our case, the UART interface.
 The programmer may define the interrupt service routine as a normal function but
the actual declaration is compiler dependent. This approach where there are more interrupt
service routines, one for each interrupt source, and where the programmer may define
these routines separately in code for each interrupt source is called vectored interrupts.
 In the case of ATMEGA16 and the compiler we are going to use (avr-gcc) an
interrupt service routine may be declared in any code file (not in a header file) using the
following syntax:

 Code listing 2-17 ATMEGA16 interrupt service routine declaration syntax in Atmel Studio 7

ISR(INTERRUPT_VECTOR_NAME_vect)
{
 // some code
}

 The “INTERRUPT_VECTOR_NAME_vect” parameter must be the actual interrupt
vector name defined in the register definition header file (io.h in general or, in our case,
iom16.h).

 OPTIONAL ASSIGNMENT: Open the iom16.h header file and search the
appropriate interrupt vector name to be used for the UART reception interrupt.

 The interrupt vector that we will use in this laboratory work is the one related to the
reception of a character over the serial UART interface. Searching the iom16.h could lead
to vector responsible for the UART reception interrupt: USART_RXC_vect. Having the
name of the interrupt vector, the actual definition of the interrupt service routine may be
the following:

Digital Signal Acquisition and Conditioning 149

 Code listing 2-18 ATMEGA16 interrupt service routine for UART reception interrupt

ISR(USART_RXC_vect)
{
 // some code
}

 The above syntax is newly introduces by Atmel Studio replacing the old declaration
using the SIGNAL keyword. The SIGNAL mode of declaring an interrupt is currently
deprecated. The above syntax should be used instead. If one wants to use the deprecated
declaration style in Atmel Studio 7 a special define needs to be inserted at the beginning
of the code file containing the deprecated declaration. Such an example is presented in the
following code snippet:

 Code listing 2-19 ISR deprecated style definition define statement

#define __AVR_LIBC_DEPRECATED_ENABLE__ 1

 The reasonable question that could arise is what code should be written into the
interrupt servicing routine function? Giving the fact that this function is called by the core
when a byte is received over the serial interface, the obvious operation here should be to
read that character from the UDR register, store it in a global variable and announce the
main loop, using another global variable as a flag that a new character has arrived. Keep
in mind that the global variables that are accessed from the interrupt service routine should
be declared as volatile.
 There are two main configuring operations that need to be done in order for this
interrupt service routine to be activated and taken into consideration of the core. First, the
serial UART interface needs to be configured in order to send an interrupt signal upon
reception of a byte over the serial line. The responsible bit for this is RXCIE in UCSRB
register. Having this bit set as logic 1 instructs the serial UART interface to send an
interrupt signal to the ATMEGA16 core when data is received over the line. The second
configuration, which needs to be done, is to enable the global interrupt system of the core.
This is done by calling the following function before the serial interface is configured:

 Code listing 2-20 Global interrupt enable function call

int main(void)
{
 // some code
 sei(); // global core interrupt enable function
 //some code
}

 Having all of this written, the final discussion is on the main loop program, which
most of the time must verify if new data has arrived by checking the flag written by the
interrupt service routine. If the flag has the correct value then the program should read the
newly arrived byte by accessing the global variable containing it (written by the interrupt
service routine). Having the new data it should be transmitted back over the serial line
using the transmit function routine already presented in the serial library developed
earlier. The only operation left doing is to reset the flag that announces the arrival of a

 150 Laboratory work 8 – Oscilloscope control

new character, actually, the flag variable written by the interrupt service routine function.
If this flag is not reset then the code will be stuck infinitely sending the last received
character over the serial line. A flow chart diagram of how the main loop program of the
interrupt based echo should look like is presented in the following figure:

 Fig. 2-49 UART echo main program loop with interrupts

 ASSIGNMENT 3: Modify the serial interface library previously developed in order
to support UART reception using interrupts. Add the interrupt service routine into the
library and export the necessary variables to the main program through the serial library
header file (using the export statement). Modify the main program loop in order to have
the serial echo work with reception, using interrupts.

2.9 Laboratory work 8 – Oscilloscope control

 This laboratory work can be seen as an integration laboratory work which will
combine all the features of the oscilloscope previously developed into one applications.
The idea is to also add a basic communication protocol which should serve as a control

Initialize serial
interface

Enable global
interrupts using

sei()

Is flag variable set by
interrupt service routine?

Check flag variable

NO

Get data from
global variable

written by interrupt
service routine

Send data back over
serial interface

Reset flag variable

YES

Digital Signal Acquisition and Conditioning 151

panel of the oscilloscope. The APND PC software application, beside the display part,
also offers the possibility to send a 2 bytes word over the serial interface. This word can
be used in order to control the features of the oscilloscope, thus serving as a control panel.
 The control panel of the oscilloscope should have the following functions:

1. Switch any of the channels on or off
2. Change the triggering mode: positive or negative
3. Change the triggering source channel: channel 1 or channel 2
4. Change the time base of the oscilloscope

 The features 2 and 3 are already implemented in the previous laboratory works and
should also have the possibility to change the settings. As requested in the assignments in
Laboratory work 5 – Oscilloscope trigger the code should offer the possibility to change
the triggering edge on compile time using define statements. Moreover, also on compile
time using define statements, the code should offer the possibility to change the trigger
channel source.
 The idea in this laboratory work is to offer the possibility to change some of the
oscilloscope settings at runtime. Currently can only be changed at compile time. In order
to do so, the serial interface could be used to send commands to the embedded side of the
oscilloscope from the PC software. Considering the fact that from the PC software only a
2 byte word may be sent to the embedded software, the commands should be bitwise
encoded into this word.
 In the next paragraphs we will discuss a solution on how the commands may be
bitwise encoded in order to be transmitted to the embedded part of the oscilloscope. The
attendees may use any other solution to transport the commands and any working solution
will be accepted.
 We will proceed with one solution where we will bitwise encode the commands as
presented in the following figure:

 Fig. 2-50 Bitwise command encoding protocol

 In Fig. 2-50 above, the 2 byte word that can be sent from the APND PC software
application is bitwise presented and the bits a split in groups of 4 as 4 bits is the minimum
number of bits for hexadecimal representation. Having the grouping in the above figure,

0000 0000 0000 0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Trigger edge
control

Trigger
Channel source

control

Time base
control

Channel display
control

 152 Laboratory work 8 – Oscilloscope control

we can distribute the commands to the grouping of these bits and so we can obtain the
following rules:

- Group represented by bits 15-12 is responsible for the control of the triggering
edge. Using this group the oscilloscope should be controlled whether to use
positive edge triggering of negative edge triggering

- Group represented by bits 11-8 is responsible for the control of the channel source
the triggering is made on. Using this group the oscilloscope should be controlled
whether to use channel 1 or channel 2 for triggering source

- Group represented by bits 7-4 is responsible for the control of the oscilloscope’s
time base. The number formed by these bits should divide the maximum time
base. This aspect will discussed further in this laboratory work

- Group represented by bits 3-0 is responsible for the control of which channel
should be displayed on the oscilloscope. The possible options should be: no
channel, channel 1, channel 2 or channel 1 and 2 (a feature available on any real
oscilloscope).

 In order to use the 2 byte word we must first implement a small finite state machine
that is able to receive the 2 bytes and form one 16 bit word. First off all, it is important to
know how the PC software sends the 2 byte word over the serial line, giving the fact that
only one byte may be sent over the serial line at a time, in a frame.
 The APND PC software accepts a hexadecimal 2 byte unsigned integer to be written
into the textbox and sends this number with the least significant byte first followed by the
most significant byte (ex. Byte formed by bits 0-7 is sent first followed by the byte formed
by bits 8-15).
 In order for the microcontroller program to receive this 16 bit word it must implement
in the serial UART interrupt service routine a small finite state machine that receives the
2 bytes and combines them in the end before passing the newly formed 16 bit number to
the main loop application.
 The finite state machine should contain only 2 states and it should be called by the
interrupt service routine. In this case, each time finite state machine is called it would be
in a moment a new byte is available in the receive buffer. In the first state the finite state
machine should get the byte that represents the least significant part of the 16 bit word,
store it in a variable and switch to the next state. In the second state the finite state machine
should receive the most significant part of the 16 bit word. In this case it should combine
it with the previously received byte, form the 16 bit word and pass it to the application
main loop. This state should also reset the whole finite state machine. Even if this finite
state machine is quite simple the following figure summarizes the operations:

Digital Signal Acquisition and Conditioning 153

 Fig. 2-51 UART 16 bit word reception finite state machine

 Each time the finite state machine finishes receiving a new 16 bit word, it should
announce the main loop program about the availability of new data. This can be done by
using a volatile variable with the functionality of a flag. The interrupt service routine,
once it has a new 16 bit word, can set the flag. The main loop program must then test the
flag and when it finds it on the correct value it should read the newly arrived 16 bit word
and then reset the flag. The newly arrived 16 bit value should be stored in a volatile
variable. Also the flag variable should be a global variable.
 After having the 16 bit word available we can use some of the bits to implement the
first control methods. The first controlling should be the edge of the triggering and the
source channel used for triggering. This can be easily done by using the code developed
so far and replacing the testing of the define statements with the testing of the required
bits.

 ASSIGNMENT 1: Implement a finite state machine algorithm inside the interrupt
service routine function that is able 2 receive and combine the 16 bit command word from
the APND PC application. Use 2 global variables to communicate between the interrupt
service routine and the main program loop: one variable to announce the arrival of a new
command word and one variable to contain the actual command word. Both variables
should be made volatile. The main program loop should check for the first variable (flag
variable – which is set by the interrupt service routine when a new command has arrived)
and if the variable flag is found of value 1 than the program should read the second
variable containing the actual data and make the necessary operations. After reading the
actual command variable the main loop program should reset to 0 the flag variable, in
order to avoid being stuck executing same command over and over again.

 Regarding the controlling of the edge of the triggering, upon the arrival of a new
command 16 bit word, if the bits 12-15 have, for example, value 0, then negative edge
should be used and if the value is 1 then it should be switched to positive edge triggering.

STATE 1
Get and store least
significant part of

word

STATE 2
Get most significant part of word
Combine the 2 parts of the word

Announce the main loop application

 154 Laboratory work 8 – Oscilloscope control

 The embedded part of the oscilloscope should only sense the command at the
beginning of the acquisition and storing of a buffer, practically at the beginning when the
buffer is considered empty. During the time the buffer is being filled, the microcontroller
shouldn’t be expected to process new commands.
 Regarding the controlling of the source channel that should be used for triggering,
upon the arrival of a new command 16 bit word, if the bits 8-11 have, for example, value
0, and then channel 1 should be used as source channel for triggering, and if the value is
1, then channel 2 should be used as source channel for triggering. Again, a command,
should only be executed at the beginning of a new loop execution.
 These two aspects regarding trigger should not imply too much code change thus
these have already been implemented but the configuration was made only at compile
time using defines. The only adaptation here is to use the 16 bit command word to change
the settings at runtime instead of the define statements at compile time.
 The only code change, which will be a little difficult, is the part related to the
frequency calculation of the triggered signal. According to the explanations in Laboratory
work 6 – One channel frequency calculation, the frequency calculation is depended on the
triggering. Changing the triggering will affect frequency calculation. The calculation of
the frequency needs to be adapted if the edge of triggering is changed and also if the
source channel of the triggering is changed.

 ASSIGNMENT 2: Implement the 2 commands related to triggering: the command
for changing the edge of triggering and the command for changing the source channel
used for triggering. Use the APDN PC software in order to validate the functionality.

 ASSIGNMENT 3: Adapt the signal frequency calculation module in order to
correctly react to the changes of the triggering coming from the 16 bit word command
from the PC application.

 Two of the control panel features defined above have been taken care of (more
exactly feature 2 and 3). Regarding feature 1 which says that the oscilloscope should be
able to enable and disable the display on any of the channels. This command, according
to Fig. 2-50, is encoded into bits 0-3 from of the 16 bits available in the command word.
There should be 4 states of this feature:

- Display off for both channels
- Display only Channel 1
- Display only Channel 2
- Display both Channel 1 and Channel 2

 The implementation of these 4 states of the command are trivial to implement on the
embedded side. The only operation that needs to be done is, according to the selected
setting (command), to store the actual acquired data into the buffer or to store value 0
instead of the acquired data. For example if only Channel 1 is selected to be displayed,
when writing the data into the 2 buffers, the buffer for channel 1 should be written with
the actual data from the ADC and the buffer for channel 2 should be written with 0. No

Digital Signal Acquisition and Conditioning 155

other modification is necessary thus the PC application will display, in this case, the actual
waveform for channel 1 and a line on value 0 for channel 2. Same algorithm should be
applied for all situations.

 ASSIGNMENT 4: Implement the channel on/off functionality. Only the actual data
that goes into the buffers should be affected and not the ADC conversion itself. The ADC
should convert data for both channels even if it would be discarded. Having this approach
will not modify the sample rate. Validate the functionality using the PC software
application by sending the correct command word to the embedded system to process.

 The only control command, which remained untouched, is the command responsible
for the changing of the time base of the oscilloscope. This can be done in 2 ways: one way
is to change the acquisition period by modifying the clock of the ADC and another way
is the change the actual size of the buffers.
 In this laboratory work the second method will be used. In order to do so, the buffers
will still be statically declared and will have an absolute maximum size, but the actual
size will vary depending on a divisor value coming from the PC application using the 16
bit command word. From this command word, bits 8-11 will be used for this control.
These bits will serve as a number that will divide the maximum buffer size forcing the
acquisition to be made not for the whole size of the buffers, but for the resulted size of the
division. Pay special attention what is the number of samples changes; this number needs
to be update into the protocol encoding as described in Table 6 from Laboratory work 4 –
Minimal 2 channel oscilloscope.

 ASSIGNMENT 5: Implement changing of the time base of the oscilloscope. Modify
the size of the buffers accordingly in the protocol encoding. Make sure, that in the
protocol, encoding the real size of the acquisition is encoded and not the maximum
allocated size of the buffers.

 156 Introduction

3 Digital Signal Processing

3.1 Introduction

 The digital signal processing discipline aims at introducing the student into minimal
aspects regarding signal processing. As a subdomain of digital signal processing we will
address audio processing during this laboratory work.
 In order to attend to this laboratory the students must have the following mandatory
prerequisites:

1. Strong C programming skills [1]
2. Basic knowledge of embedded systems and embedded programming and

debugging
3. Knowledge data structures and algorithms: ring buffer data structure management

3.2 Laboratory work – The GPIO System of Blackfin BF537

 This laboratory work is used as a general introduction and has, as main purpose, to
prepare the student for the following laboratory assignments.

 This laboratory makes the first steps in writing, compiling and executing a program
on a Blackfin BF537 processor. Also this laboratory presents the General Purpose Input
Output module of BF537. As a usage example of the GPIO module, a LED blink
application will be implemented using a software delay procedure.
 The main components of the BF537 periphery are: Ethernet controller, CAN
controller, I2C controller, PPI interface, SPI interface, 2 synchronous serial ports
(SPORT), 2 asynchronous serial ports UART, timer module, 48 GPIO signals, a DMA
controller, etc. The pins of this processor are organized under 16 bit ports: PORTF,
PORTG, PORTH, and PORTJ. All the ports have 16 signals with the exception of PORTJ
which has only 12 signals. After a system reset all the pins are configured as GPIO. The
only exception is PORTJ which does not offer GPIO functionality.
 The GPIO module is controlled by the following registers:

- PORTxIO_DIR
- PORTxIO_INEN,
- PORTxIO_IO,
- PORTxIO_SET,
- PORTxIO_CLEAR,
- PORTxIO_TOGGLE,
- PORTxIO_POLAR,
- PORTxIO_EDGE,

Digital Signal Processing 157

- PORTxIO_BOTH,
- PORTxIO_MASKA,
- PORTxIO_MASKB,
- PORTxIO_,
- PORTxIO_MASKA_SET,
- PORTxIO_MASKB_SET,
- PORTxIO_MASKA_CLEAR,
- PORTxIO_MASKB_CLEAR,
- PORTxIO_,
- PORTxIO_MASKA_TOGGLE,
- PORTxIO_MASKB_TOGGLE

 In the register names presented above the x can be either 'F', 'G' or 'H'. Only the most
important registers regarding the GPIO will be presented in this laboratory. The full
description of the registers presented here may be found in the Hardware Reference
Manual of Blackfin [20], chapter 14.
 One of these registers that present interest to our laboratory work is the
PORTxIO_DIR register collection. Each bit of this register controls the direction (INPUT
or OUTPUT) of the pin for the selected port. In order to configure a pin as an output pin,
the corresponding bit of PORTxIO_DIR has to be set as "1". After reset, all the pins are
configured as inputs. Example: PORTFIO_DIR = 0xFF00 has the following effect: lines
(pins) PF8 to PF15 are outputs and lines (pins) PF0 to PF7 are inputs. The description of
PORTxIO_DIR can be found in the following figure [20]:

 Fig. 3-1 GPIO Direction registers description [20]

 The register that actually controls the stat of the port working in a GPIO manner is
PORTxIO. This register has a double meaning: it can modify the logical levels of the pins

 158 Laboratory work – The GPIO System of Blackfin BF537

that are configured as outputs and can read the logical levels of the pins that are configured
as inputs. In addition, in order for the processor to detect the logical level of an input, an
extra configuration has to be made. In order for a pin to function as an input pin not only
the "0" logic value has to be written in the corresponding bit of PORTxIO, but also a logic
"1” has to be written in the corresponding bit of the register PORTxIO_INEN. These
registers are described by Fig. 3-2 and Fig. 3-3.

 Fig. 3-2 GPIO Input / Output registers description [20]

 Fig. 3-3 GPIO Input Enable registers description [20]

 ASSIGNMENT 1: Create a new Visual DSP++ Project with the following settings:
"Standard Application", ADSP-BF537 as processor. Create a new debug session (Session

Digital Signal Processing 159

-> New Session -> ADSP BF537 -> EZ-KIT Lite -> ADSP-BF537 EZ-KIT Lite via
Debug Agent). In this moment the Visual DSP++ Environment is connected via a debug
channel to the evaluation laboratory board. In order to compile the project: press F7 (or
Project -> Build project). After a successful compilation an automatic upload of the
executable to the processor is performed. The executable code can also uploaded after
pressing CTRL-R. In function main add an int variable and increment it in an infinite loop
(an infinite while loop). Visualize this variable as following: View -> Debug -> Windows
-> Expressions. Run the resulting program step by step (F11 or Debug -> Step Into) and
observe the way the defined variable modifies).
 ASSIGNMENT 2: Using the project created at laboratory application 1:

- Open window "Manage Custom Register Windows" from Register -> Custom;
- add to this new window the registers PORTFIO_DIR, PORTFIO,

PORTFIO_INEN from the Port I/O tree;
- activate this newly created window (Register->Custom -> <Window name>);
- in the PORTFIO_DIR register configure as outputs the 6 signals that are

connected to the LEDs on the board, LED1 to LED 6 leaving the other pins of
port F as inputs (check the board schematic in the manual);

- in PORTFIO_INEN configure as inputs the 4 signals that are connected to the
buttons on the board

- Try to turn on the LEDs by writing logical "1” at the corresponding bits of the
PORTFIO register. The status of the LEDs will change immediately after writing
the register

- In order to view the changing of the values of the inputs, an extra step into the
execution is required. Hold one of the buttons pressed while executing a new step
into and observe the modifications in the port registers.

 ASSIGNMENT 3: Write a program that reflects the state of the buttons using the
LEDs.

- Include the cdefBF537.h header file in your main C file

 #include <cdefBF537.h>
- access to the processor register are made as the example below:

 *pUART1_GCTL = 0x0001;

 ASSIGNMENT 4: Write a simple delay routine using the "busy-loop" mechanism
in order to blink the LEDs. A busy-loop can be implemented as following:

 160 Laboratory work – The Timer module of Blackfin BF537

 Code listing 3-1 Busy-loop implementation example

int main(void)
{
 // some code
 volatile int i;
 for (i = 0; i < xxxxxx; i++);
 //some code
}

3.3 Laboratory work – The Timer module of Blackfin BF537

 This laboratory assignment can also be considered as a general introduction for the
upcoming laboratory assignments. The main purpose of this laboratory work is to instruct
the student into the clock system of the processor. The student will also learn how to use
the timer module inside BF537.
 In most cases, microcontrollers, DSPs and general processors are synchronous
devices, which implies the usage of a clock signal. This signal can be internally generated,
using an RC oscillator, or can be externally provided by a dedicated clock generator or by
using a quartz oscillator. The Blackfin BF537 may use a quartz oscillator in order to
generate its internal clock signals. The quartz oscillator is the main input of a PLL (Phase
Locked Loop) circuit which is meant to multiply and stabilize the main clock source.
Additional dividers and multiplexers are also used in order to generate all the clocks
needed internally by the processor. The clock generation scheme is presented in Fig. 3-4
[20].

 Fig. 3-4 GPIO Blackfin BF537 clock generation diagram [20]

Digital Signal Processing 161

 As described in the figure above, after dividing the multiplying the CLKIN signal
(provided by the quartz oscillator) the VCO signal is obtained. This signal is the main
input for obtaining the most important clock signals used by the core and the periphery of
the BF537 DSP: CCLK (Core Clock) and SCLK (System Clock). The SCLK signal is the
clock input for the DSP's periphery. More information regarding the clock system of
BF537 can be found in the Black BF537 Hardware Reference Manual, chapter 20 [20].
Based on Fig. 3-4, the clock signals can be calculated using the following formulas:

∙ ,							 0 (3-1)
1
2
∙ ∙ ,		 1 (3-2)

,						 ∈ 1,2,4,8 (3-3)

,				

∈ 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
(3-4)

 Based on the formulas above an important observation can be made: the peripheral
clock, SCLK, may be divided using higher divisors that the ones used to divide CCLK,
thus SCLK may be significantly lower than CCLK. This is usually needed mainly because
the periphery of a microcontroller, or a DSP, is usually clocked with lower frequency
clock signals than the core of the processor.
 After system reset the variables above have the following values: MSEL = 10, CSEL
= 1, SSEL = 5.
 The BF537 on the laboratory board is clocked using a 25 MHz quartz. Using the
default values presented above, immediately after system reset, the processor starts at a
250 MHz core clock and a 50 MHz peripheral clock.
 Regarding the timers of BF537, there are 8 general, identical, 32 bit wide timers with
interrupt generation capabilities. The general structure of the 8 timers is presented in Fig.
3-5 [20]:

 162 Laboratory work – The Timer module of Blackfin BF537

 Fig. 3-5 Blackfin BF537 timer block diagram [20]

 All the timers of this DSP are controlled and monitored by 3 general registers.
TIMER_STATUS, TIMER_ENABLE and TIMER_DISABLE. Each register controls all
the 8 timers. The general internal structure of a timer is described by the following figure
[20]:

Digital Signal Processing 163

 Fig. 3-6 Blackfin BF537 timer internal structure [20]

 All the timers have several operating modes. In this laboratory work, only the PWM
(Pulse Wide Modulation) operating mode will be used and detailed. This operating mode
can be used for waveform generation, for pulse generation or for generating periodic
events. In order to generate periodic events, the timer interrupts have to be properly
configured. In order to verify if an interrupt is pending, the programmer may read the
status register.
 A more detailed documentation for the BF537 timers can be found in the Blackfin
BF537 Hardware Reference Manual [20], Chapter 15.
 The timers of BF537 are controlled by the following registers:

 164 Laboratory work – The Timer module of Blackfin BF537

 Fig. 3-7 Blackfin BF537 timer enable register structure [20]

 TIMER_ENABLE is a register that can be used to enable the timers. The structure is
presented in Fig. 3-7. TIMER_DISABLE is the register that can be used to disabled the
timers. The structure is identical to the structure of TIMER_ENABLE register.

 Fig. 3-8 Blackfin BF537 timer status register structure [20]

Digital Signal Processing 165

TIMER_STATUS is a register which offers the status of each timer and a way to reset
this status by the programmer. For instance, the programmer may check if a timer
generated an interrupt by reading the corresponding bit in this status register. If the value
is logical "1" then the timer has a pending interrupt. In order to reset the status of the
checked interrupt, the programmer has to write a logical "1" to the corresponding bit of
that timer. The structure of the timer status register is presented in Fig. 3-8
 All of the registers presented above are shared by all of the timers. Each timer has its
dedicated bits in these registers. Also, each timer has dedicated registers like
TIMERx_CONFIG, TIMERx_COUNTER, TIMERx_PERIOD, where x can be 0 - 7 to
identify the timer.

 Fig. 3-9 Blackfin BF537 timer configuration register structure [20]

 TIMERx_CONFIG is the register responsable for the configuration of the designated
timer. Each timer has a configuration register associated with it. The description of this
register is found in Fig. 3-9.
TIMERx_COUNTER is the 32 bit counter register. Each timer has its own counter
register.

 166 Laboratory work – The Timer module of Blackfin BF537

 TIMERx_PERIOD is a 32 bit wide register that identifies the counting period. The
value of this register is compared during counting with the timer counter register in order
to generate an interrupt on match.
 The maximum counting period of a timer can be calculated using the following
formula:

2 1
 (3-5)

where Fcount is the input frequency of the counter (usually equal to SCLK).
 The value of the counter value for a designated period may be obtained using the
following equation:

∙ (3-6)

where t is the timer period in seconds, F the input frequency of the timer, N - the timer
period tick value (the number of ticks).
 According to the manual, it is mandatory that the timer enable operation (through
TIMER_ENABLE register) to be made after the timer configuration. The enabling
operation is the last operating to be made to the timer. After the timer is enabled it cannot
be reconfigured until it is disabled again.

 ASSIGNMENT 1: Calculate the PLL coefficients (MSEL, CSEL, SSEL) in order to
make the core function at maximum frequency (600 MHz) and the periphery at 300 MHz.
Consider the case when the BF537 chip is clock using a 25 MHz quartz.
 ASSIGNMENT 2: Calculate the TIMERx_PERIOD register value (in hexadecimal
format), using the clock condition from application 1 in order to obtain the period 100 us
interrupt.

 ASSIGNMENT 3: Write a small program that blinks a LED on the board at 1Hz
(0.5 seconds on, 0.5 seconds off) using timer 7 and its status register to identify a pending
interrupt. Hints:

- write a modular code (using functions for timer initialization, LED initialization,
LED blink, etc...)

- use only the timer status register to check whether the interrupt event occurs. Do
not use and activate the global processor interrupts

- check laboratory work 1 for GPIO usage and use some of the code written the
previous laboratory.

- read about PORTx_TOGGLE in the hardware reference manual

 ASSIGNMENT 4: Change the code written at application 3 in order to use the global
processor interrupts. Blink the LED in the interrupt service routine. Hints:

- initialize the global interrupts to generate an interrupt for Timer7 using the
following function

Digital Signal Processing 167

void initInterrupts(void)
{
 *pSIC_IAR3 = 0xFFFFF5FF;
 *pSIC_MASK = 0x04000000;
 register_handler(ik_ivg12, ISR_Timer7);
}

- use the following function as the timer 7 interrupt service routine:

EX_INTERRUPT_HANDLER(ISR_Timer7)
{
 //user code
}

- the necessary include statements are:

#include <cdefbf537.h> // register definitions for BF537
#include <sys/exception.h> // definitions for the interrupt system

- the first instruction of the interrupt service routing has to reset the current interrupt

state (check TIMER_STATUS register or processor user manual)

3.4 Laboratory work – Audio signals

 The main purpose of this laboratory work is to introduce the student into audio
processing. The theoretical aspects presented in this laboratory work are related to the
acquisition and digital processing of the audio signal. The laboratory assignments are
meant to show how the Blackfin DSP captures the audio signal and also to show how the
programmer has access to each of the captured sample. This laboratory is not oriented on
configuring the communication interfaces between the BF537 and the rest on the chips
involved in the audio processing. A sample code will be provided in order to configure
the chips on the board to capture the audio signal.
 A digital signal processor is a special type of processing unit which is oriented on
signal processing using specialized functional units. This instruction set of a DSP has
special instructions that are used to implement the basic operations in digital signal
processing; for example: convolution can be implemented using instructions like MAC
(multiply and accumulate), which in most cases can execute this operation in a single
clock cycle. Another important characteristic of a DSP is the architecture. Most DSP are
organized using a Harvard architecture or even a modified Harvard architecture.
 A Harvard architecture is characterized by the existence of 2 distinct memories: a
code memory and a data memory. In addition, in a modified Harvard architecture the data
memory is divided into 2 distinct memories. This architecture speeds up the fetch process
of an instruction and its operands. Also in many cases DSPs have additional modules that
are meant to accelerate the execution of the code like pipelines and cache memories.
 The signals that are present in nature are physical signals continuous in time which
are transformed into electrical signals (analog signals), continuous in time, using sensors
and transducers. Mathematically these signals are modeled using a continuous, single

 168 Laboratory work – Audio signals

variable (time) function. In order to study, analyze and process these analog signals by a
digital system they have to be converted into digital signals. The operation that converts
an analog signal to a digital signal is called analog to digital conversion. The main steps
involved in an analog to digital conversion are: sampling, quantization and binary
representation. The opposite operation is digital to analog conversion. For more
information regarding these operations check the Digital Signal Processing Course.

 The audio signal is an analog signal with frequencies between 20 Hz and 20 KHz,
the ideal perception of the human ear. Using the sampling theorem, in order to properly
convert the audio signal into a discrete signal the minimal sampling frequency has to be
greater than 40 KHz. The most common sampling frequencies used to convert the audio
signal to a digital signal are 44.1 KHz, 48 KHz and 96 KHz. When using a low resource
system to process the audio signal, lower sampling frequencies are used: 22050 Hz, 11025
Hz, and 8000 Hz. The disadvantage in using such sampling frequencies is that the quality
of the converted signal is significantly reduced. There are some type of applications for
which this disadvantage is not important; for example in telephony a sampling frequency
of 8 KHz is used.
 Another important aspect in audio processing is the intensity of the audio signal. The
intensity of the audio signal is represented on a logarithmic scale mainly because of the
human ear perception. The human ear can easily distinguish the variations of low intensity
sounds than the variations of very high intensity sounds. The human ear get saturated
when receiving high intensity sounds. The intensity of the audio signal is represented
using a logarithmic measuring unit, the decibel (dB). The conversion between the
logarithmic and linear scale and vice versa is modelled using the following expressions:

20 ∙ log

 (3-7)

∙ 10 (3-8)

 In the formulas above, L designated the intensity in dB of the audio signal. In an
audio processing system, in order to modify the output intensity of the sound the processor
has to modify the L parameter on a linear scale. A value of L = 0 specified that the intensity
of the audio signal is not modified; a positive value (L > 0) specified the amplifying of
the signal; a negative value of L (L < 0) specified the attenuation of the audio signal.
 The general form of an audio processing system is presented into the following block
diagram:

Digital Signal Processing 169

 Fig. 3-10 Block diagram of a general audio processing system

 The digital algorithms and processing applied on the digital signals are implemented
on the DSP which operates on the captured samples of the audio signal. The DSP has the
audio signal as input, in digital form provided by the analog to digital converter. The result
of the DSP's processing is fed to the digital to analog converter which reconstructs the
audio signal in order to be perceptible by the human ear again.
 The ADSP-BF537 EZ-KIT Lite laboratory boards has the necessary elements to
implement the blocks presented in Fig. 1. The DSP block is represented here by the
Blackfin BF537 processor. The analog to digital converter is implemented using an
AD1871 [21] chip and the digital to analog converter is represented by an AD1853 [22]
chip.
 An important observation has to be made: The laboratory board only has a digital to
analog converter to output the resulting audio signal and no amplifying circuit after it. In
this situation the DSP can only lower the volume (attenuate) the signal and cannot amplify
it. Amplifying of the signal may result to distortion.
 In order to ease this laboratory work, a sample code is provided. This code is meant
to initialize the audio processor as stated in the introduction of this laboratory work. The
configuring operations of the ADC and DAC chips as well as the communication
interfaces between them and the DSP are not the scope of this laboratory work. This code
is organized under a proper configured Visual DSP++ project. This code implements a
simple audio loopback (the input samples are transferred to the output of the board
unprocessed). The project contain the following code files:

- main.c - contains the main program file
- ISR.c - contents the interrupt service routines
- initialize.c - contains the initialization of the hardware components used to

capture, process and output the audio signal
- process_data.c - contains a callback function that offers the instant captured

values of the audio samples (there are 2 audio samples captured at a time - stereo
left and right)

- talkthrough.h - header file

 170 Laboratory work – Audio signals

 The main function is used to call the initialization functions defined in initilize.c
which are meant to configure the ADC and DAC chips as well as the communication
interfaces. After this, the main function blocks the main thread into a while loop. The
audio samples are transferred from the ADC to the DSP and from the DSP to the DAC
using 2 DMA channels. An interrupt is generated after the reception of a double sample
(left sample and right sample of a stereo audio signal). This interrupt calls the function in
process_data.c which offers the captured double sample to the programmer. The
programmer has to take into consideration the fact that the processing function in
process_data.c executes in interrupt context.

 ASSIGNMENT 1: Download and study the execution of the sample code:

- Connect an audio signal source to the line in connector of the board. Using a
double jack cable connect the audio output of the computer (the green connector)
to the line in connector of the board.

- Connect the headphones to the line out connector.
- execute the program

 ASSIGNMENT 2: Explain what these lines in process_data.c do. Explain the
difference between them. Correct the situation.

iChannel0LeftOut = ((iChannel0LeftIn<<8)>>3)>>8;
iChannel0RightOut = ((iChannel0RightIn<<8)>>0)>>8;

 ASSIGNMENT 3: Implement a logarithmic volume using two of the buttons on the
board, one as volume up and another as volume down. The press of each button should
modify the volume by -/+1dB.

- Use expression presented above where V0 is the input sample and V is the output
sample. The input sample should be multiplied by a coefficient calculated based
on L parameter that will be modified by the actions on the two buttons.

- Take into consideration that the processing function is execute in interrupt
context; try not to make time consuming calculations in this function. Also try not
to make unnecessary calculations.

- observe and explain what happens when the L parameter is above 0

 ASSIGNMENT 4: Write a short Matlab function that modifies the volume of a wave
file. The function should have the following parameters: the input wavefile path, the
signed value in dB which amplifies/attenuates the wavefile, the output wavefile. Use the
same logic as in application 3. Make use of the following functions: wavread, wavwrite,
plot, figure, and subplot. Use also "help <function>" to see the meaning and parameters
of these functions. Parse the wave samples using a “for loop”. Plot the input wave and the
output wave on a same figure to see the difference.

Digital Signal Processing 171

3.5 Laboratory work – Echo effect

 The purpose of this laboratory work is to teach how to implement the echo effect on
an audio signal using a delay line. The circular buffer data structure will be used in
implementation.
 The echo effect was first made by Mike Battle in 1959 using a tape recorder. The
main idea was to apply a delayed (using recording) version of the audio signal on the
original audio signal. There are certain types of audio echo:

- Echoplex - the first version of the echo produced by Mike Battle in 1959
- Doubling echo - is the echo obtained by adding a short range delay over a recorder

audio
- Slapback echo - same as doubling echo but the delay is significantly longer.
- Flanger, chorus, reverb - these are echo based audio effects where the delay time

is modulated
 The generation of these audio effects was a little complicated when using devices
working directly with analog signal. When using DSPs the generation is much simpler. In
this case the idea is that a delay sample is added to the current sample. The newly obtained
sample is sent to the output and saved in memory in order to be used over the next sample.
Before the delayed sample is added to the current sample it needs to be attenuated at half
of its value. The same operation has to be performed on the newly obtained sample before
storing it for later use. This attenuation has to be performed in order to avoid saturation.
The delay system is presented in the following diagram:

 Fig. 3-11 Echo generation system block diagram

 This delay system can be easily implemented using a circular buffer. The delay time
is proportional to the size of the buffer. The upper schematic can be explained as
following: each received sample is reduced at half of its intensity, added to sample stored
in the circular buffer at a current index, reduced to half of its intensity again and then
stored at the current index of the circular buffer. A circular buffer is accessed using 2
pointers: a read pointer and a write pointer. The most important rule of a circular buffer
is that the read pointer is always behind the write pointer. The circular buffer is

 172 Laboratory work – Echo effect

implemented using a normal linear buffer with the property that it is accessed in a circular
manner: the entry immediately after the last entry of the buffer is actually the first entry
of the buffer. In order to achieve this rule the pointers are incremented using modulo based
arithmetic. For instance, if N is the buffer physical dimension, buff is the actual physical
buffer, rd_ptr is the read pointer, wr_ptr is the write pointer and value is the actual value
stored in the buffer the main operations (load/store) can be implemented as following:

//Circullar buffer store:

buff[wr_ptr] = value; wr_ptr = (wr_ptr + 1) % N;
//Circullar buffer load:

value = buff[rd_ptr]; rd_ptr = (rd_ptr + 1) % N;

 In order to achieve an echo effect, a circular buffer has to be used in order to
implement the diagram presented in Fig. 3-11, thus in this case is sufficient to use a single
pointer for reading and writing operations over the circular buffer (rd_ptr = wr_ptr).

 ASSIGNMENT 1: Using the loopback framework presented in the previous
laboratory work, implement the echo effect. Use a circular buffer. The size of the circular
buffer should be between 2048 and 4096 in order to achieve best echo quality.

 ASSIGNMENT 2: Combine the logarithmic volume implemented in the previous
laboratory work with the echo effect.

 ASSIGNEMNT 3: Write a Matlab function that adds echo to a wave file using a
circular buffer implemented in Matlab using a 2 dimensional array. The array of the
circular buffer can be declared using function zeros (length, 2). In Matlab the array of an
index begins at 1. The echo function should take the following parameters: input wave
file path, output wave file path, and size of the circular buffer. The index of an array
should be implemented using a uint32 variable (var = uint32 (1) - a uint32 variable
initialized with 1). Parse the wave samples using “a for” loop.

Embedded Systems Design and Development 173

4 Embedded Systems Design and Development

4.1 Introduction

 The Embedded Systems Design and Development laboratory presents the first steps
into designing and developing embedded applications. The laboratory is oriented both on
features of microcontroller but also on working with peripheral devices such as 7 segment
displays, alphanumerical LCDs, sensors, keyboards, etc.
 The laboratory works are mainly decoupled and each application presents a certain
subject. The finality of the laboratory is represented by a syncretic project which
practically combines all the previous lessons in order for students to realize a fully
functional application.
 The project’s resulted application is an alarm clock with temperature sensing, with
display on the LCD and on a 7 segment display having the configuration being done from
a control panel represented by a keyboard. The alarm clock application will also have
serial communication capabilities.
 In order to attend to this laboratory the students must have the following mandatory
prerequisites:

- Strong C programming skills [1]
- Basic knowledge in electronic fundaments
- Capacity to interpret an electronic schematic

4.1.1 Provided materials

 This laboratory will be oriented on introducing the basics into embedded
development using various peripherals. The main component that the students will use is
the Atmel ATMEGA16 microcontroller [14]. The microcontroller will be encapsulated
on a header board which the students can easily use to connect to other external
components. Another important component provided to the students is a project board-
based student learning kit formally designed by Freescale, now currently maintained by
NXP. The main advantage of this board is that it consists of a breadboard that can be used
to build prototype circuits and a peripheral board which contains an important number of
peripherals.
 Furthermore, students will also have access to various peripheral devices such as:
alphanumerical LCD, 7 segment display modules, serial communication interfaces, push
buttons, 4x4 keyboard, LEDs and many more.
 In this chapter, the following subsections will be reserved for the description of the
modules that the students will be provided.

 174 Introduction

4.1.1.1 ATMEGA16 Microcontroller, header board and debugger

 ATMEGA16 is an 8bit MEGA-AVR microcontroller designed around a RISC
architecture core surrounded by peripheral devices. The microcontroller has 16 KB of
Flash memory available for code along with 1 KB of SRAM and 512 bytes of EEPROM
memory. The main peripheral devices available in the ATMEGA16 microcontroller are:

- 2 x 8-bit timers
- 1 x 16-bit timer
- Real time counter
- 4 channel of PWM
- SPI interface
- UART interface
- Analog to Digital Converter
- 4 x 8-bit General Purpose Input Output Ports

 Although this microcontroller has very low performance comparing to the existing
microcontrollers currently present on the market it maintains its high didactical value thus
being one of the most suitable microcontrollers for teaching. A strong argument to sustain
this statement is that it only requires a power supply in order to run and it is available in
40 pin DIP capsule thus making it perfect for building small circuits on a breadboard.
Another important advantage is that it can be clocked using an internal RC oscillator with
a maximum frequency of 8MHz.
 The pinout of ATMEGA16 is also very simple and well organized as presented in
Fig. 4-1 [14]:

Embedded Systems Design and Development 175

 Fig. 4-1 Pinout of ATMEGA16

 As it can be observed in the pinout, the microcontroller has 4 ports available for
connections: PORTA, PORTB, PORTC and PORTD. Each pin is presented with its
designated ranking in the corresponding port (ex. PB1 being line 1 from PORTB) along
with its alternated function. A currently used practice in microcontrollers is to multiplex
more functions on a pin thus reducing the number of pins in the capsule. In the case of
ATMEGA16 the alternate functions of a pin are written in brackets. For example, pin PD0
is normally a GPIO pin belonging to PORTD but when the serial interface is activated the
function of this pin changes to the RXD signal of the serial interface. Same rule is
available for all pins. Special attention needs to be taken when using the lines of PORTA.
In order for these to work, even in GPIO mode, power needs to be applied to the AVCC
pin.
 ATMEGA16 may be programmed either by using the ISP interface or by using a
dedicated JTAG debugger. When using an ISP programmer the PINS involved in this
operation are pins from 5 to 11. Practically, an ISP programmer needs access to the SPI
interface of the microcontroller as well as to the RESET pin and, if needed, to the power
supply related pins. A possible connection schematic for connecting an ISP programmer
to ATMEGA16 through a standard 2x5 connector may be the following:

 176 Introduction

 Fig. 4-2 ATMEGA16 ISP connection

 The ISP programming of ATMEGA16 is limited only to downloading the executable
code from the PC into the microcontroller’s flash memory and programming of the Fuse
Bits. No real-time debugging can be made using an ISP programming. In order to be able
to debug a running code, in real time, on a microcontroller a JTAG debugger is usually
required. The JTAG is connected to the microcontroller through dedicated pins. In the
case of ATMEGA16 the dedicated pins for JTAG connections belong to PORTC from
PC2 to PC5. It is important to mention that if the JTAG interface is enabled on the
ATMEGA16 microcontroller these pins cannot be used by the programmer. These pins
remain dedicated to the JTAG interface. The connection between a standard 2x5 pin JTAG
connector and ATMEGA16 may be done as shown in the following figure:

Embedded Systems Design and Development 177

 Fig. 4-3 ATMEGA16 JTAG connection

 The JTAG that will be used for downloading the code to the ATMEGA16
microcontroller as well as for debugging the running code is the Atmel-ICE JTAG [15]
which is supported by the new development tools from Atmel.
 The enable/disable of the JTAG interface of ATMEGA16 as well as other critical
settings of the microcontroller may be configured by accessing the so called Fuse Bits.
These bits are practically represented by to registers which may only be accessed by a
JTAG or ISP programmer. The Fuse Bits registers cannot be accessed from the running
code from the FLASH memory and they are not visible to the programmer.
 Using the Fuse Bits the following items may be configured:

- JTAG interface – it may be enabled or disabled
- ISP interface – it may be enabled or disabled
- Preservation of the contents of the internal EEPROM memory upon programming

the FLASH memory
- Brown-out detector
- Clock source – various internal RC oscillator clock frequencies, external quartz

oscillator, external clock source

 178 Introduction

4.1.1.2 ATMEGA16 header board

 During this laboratory the ATMEGA16 microcontroller will be used along with a
small header board which will not only export all the microcontroller’s pins on header but
will also contain a JTAG connector a quartz oscillator connected to the microcontroller.
Such a board may be the following:

 Fig. 4-4 ATMEGA16 header board

 As it may be observed in Fig. 4-4, the microcontroller is surrounded by 2 female 2
line headers. Each pin from the microcontroller is directly connected to the corresponding
pins near it. Practically all the pins from the microcontroller are accessible using the 2 line
female headers. A block schematic of the header board may be found in Fig. 4-5:

Embedded Systems Design and Development 179

 Fig. 4-5 ATMEGA16 header board block schematic

4.1.1.3 Peripheral board

 The header board presented above will be interfaced with a peripheral board which
will also be provided for de students during these laboratory assignments. The peripheral
board, code name PBMCUSLK AXM-0392 [16] was initially designed by Freescale and
now it is maintained by NXP. This board practically consists of an isolated breadboard
which is only mechanically linked to an electronic board containing various peripherals
from LEDs, pushbuttons, serial interface, LCD to various connectors as presented in Fig.
4-6

 Fig. 4-6 PBMCUSLK peripheral board [16]

ATM
EG

A
16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

 180 Introduction

 As stated before, the breadboard in the middle is only mechanically connected to the
rest of the board. No electrical connections are made. In order to connect the peripherals
on the PBMCUSLK board to a circuit being designed on the breadboard, the black female
header surrounding the breadboard may be used. The significance of each pin in the
header is written near the pin itself. No additional documentation is needed in order to use
the board in basic applications. If needed, more information about the board may be find
in its user manual [16].

4.1.1.4 Relevant documentation

 Beside the present laboratory work manual, in order for the attendees to be able to
process these laboratory works access to further documentation is needed. A list with
some of the needed documents needed may be the following:

- Brian W. Kernighan, Dennis M. Ritchie - The C Programming Language [1]
- ATMEGA16 User Manual and Datasheet [14]

4.1.2 Laboratory applications planning

 The main goal of these laboratory lessons is to introduce the students into basic low
level embedded system design and development. The idea is to present to the students low
level aspects without having libraries destined to control various peripherals internal or
external to the microcontroller. These aspects construct the main reason why the lessons
make use of a microcontroller which is small, easy to understand but with a great
didactical value. The microcontroller is thus represented by Atmel’s ATMEGA16. The
lab sessions are somehow decoupled, each presenting a different peripheral device. The
finality of this laboratory will be a project in which the attendees must construct a fully
functional alarm clock using the provided peripheral devices.
 The first laboratory work will be concentrated into introducing the students into the
programming of ATMEGA16 using the provided materials. The developing tools
provided by Atmel will be presented along with the structure of the necessary
documentation. The practical aspect of this first laboratory work will be to implement a
small LED blink application on the microcontroller. This laboratory work concentrates
into presenting the output function of the GPIO system of the microcontroller.
 The second laboratory work presents the input function of the GPIO system of the
microcontroller as well as simple method for connecting a push button to the
microcontroller and thus determining its state.
 One of the most important peripherals of a microcontroller, the TIMER, will be the
main aspect presented in the third laboratory work. Furthermore, the students will be
introduced into basic aspects regarding the interrupt system.
 The forth laboratory application will present another external peripheral device
which is the 7 segment display digit. Most of this work will be concentrated on the design
of the software part for controlling such a peripheral device.

Embedded Systems Design and Development 181

 In order to have more complex applications, other input devices are required in order
to facilitate the user interaction with a system. Such a device, the 4 by 4 matrix keyboard,
will be introduces during this laboratory work. The most important aspects which it will
address are related to the methodology, both hardware and software, which will be used
in order to work with the keyboard.
 Another important peripheral device internal to the microcontroller which is
frequently used is represented by the UART interface and this will be the content
presented into the 6th laboratory work. Both transmission and reception will be address
along with the combination with the interrupt system.
 The 7th laboratory work is oriented into presenting a very popular alphanumerical
LCD display. This laboratory work will be divided into 2 section. In the first section the
students will have access to a simulator which provides means to manipulate the LCD’s
signals. This way, the students can easily understand the parallel communication protocol
between the LCD and a host microcontroller. The simulator is web based and easy to use.
The second part of this laboratory work will be to connect and control the LCD with the
provided microcontroller. For this second part an already developed library for the LCD
will be provided to the students.
 The final laboratory work introduces the Analog to Digital Converter of the
ATMEGA16. The first application that the students will have to implement will be a
digital voltmeter using both the Analog to Digital Converter and the UART interface. The
second application will be to connect an analogue temperature sensor the ADC of the
microcontroller and the students will have to display the converted ambient temperature.
 All these laboratory applications will be then concentrated into a project where the
students will have to implement a fully functional devices which will be represented by a
digital alarm clock with temperature sensing.

week Laboratory work Observations
1 Establishing laboratory groups Establish groups of 2
2 Introduction + Laboratory work 1
3 Laboratory work 2
4 Laboratory work 3
5 Laboratory work 4
6

Laboratory work 5

7
8 Laboratory work 6
9 Laboratory work 7
10 Laboratory work 8
11

Project

12
13
14

Table 8 Laboratory applications planning

 182 Laboratory work 1 - First project: LED blink

4.2 Laboratory work 1 - First project: LED blink

 This laboratory work presents to the students the first steps into developing and
debugging applications on Atmel ATMEGA16 microcontroller with the aid of Atmel
Studio 7 environment. As it is customary, the first application that is to be considered
when beginning work on a new microcontroller, or even as first steps in embedded
programming, is the LED blink application using software delays.
 The presentation of this laboratory work will be divided from 2 points of view: a
hardware point of view and a software point of view. The hardware part will present the
necessary connections to be made in order to build the first LED blinking applications.
The software part is responsible for presenting both the developing environment and the
coding to be designed in order to build the application.
 Before considering into analysis the schematic that should be implemented, the focus
needs to go on the basic schematic of a microcontroller with emphasize on the GPIO
module. A generic schematic of a microcontroller with a serious customization for the
ATMEGA16 microcontroller which will be used for the laboratory works is presented in
the following figure:

 Fig. 4-7 General microcontroller block diagram

 In the schematic above, the central piece of the microcontroller is represented by the
CORE. This is practically an ALU, which has the only task of executing the code.
Embedded into the silicon capsule along with the Core are the 2 usually present memories:
the FLASH memory and the RAM memory. The FLASH memory is used to store the
code that will be executed by the Core. The RAM memory is practically the Data Memory
that will store the variable data of the code. Both of these memories are usually accessed
directly by the core event though the FLASH memory, which is sometimes cached. The
Core is also connected via various busses to numerous peripheral devices. In our upper
schematic we can identify peripherals such as the UART module, TIMER, Analog to
Digital Converter (ADC) and the highly used General Purpose Input Output module.
 The module, which presents great interest to our laboratory work, is the GPIO
module. This module offers a collection of digital lines, organized in ports that have the
advantage that they can be programmed to be able to establish a logic values on the line,

CORE
Mega AVR

FLASH memory

RAM memory

DEBUG module

UART GPIO TIMER ADC

Embedded Systems Design and Development 183

but also to be able to read the logic value of that line. Our current laboratory work focuses
on using this module in order to implement the LED blinking application.
 The first aspect to be discussed is the schematic that needs to be implemented to
make the LED blink application. The block schematic is presented in Fig. 4-7

 Fig. 4-8 LED blink connection block schematic

 Having a more detailed analysis the necessary connections to be made are the
following:

- Connect the 5 V power line from the header on the peripheral board to the correct
pin of the ATMEGA16 header board (pin 10 on ATMEGA16)

- Connect the GND line from the header on the peripheral board to the correct pin
of the ATMEGA16 header board (pin 11 on ATMEGA16)

- Connect one of the LEDs of the peripheral board (using the corresponding pin on
one of the headers) to line 0 of PORTB (PB0) of ATMEGA16 from the
ATMEGA16 header board

- Connect the Atmel ICE JTAG to the ATMEGA16 header board and to an USB
port from the PC

 ASSIGNMENT 1: Make the connections described above. Search the correct pins
both of the peripheral board and on the ATMEGA16 header board. Have the laboratory
teacher verify the connections before powering up the system.

 In this first step, the hardware connections, represents the simplest task from this
laboratory applications. The much more complex task is from a software point of view.
Firstly, the primary steps into creating and configuring a new project into the developing
environment Atmel Studio 7 will be presented. The starting point of the Atmel Studio 7
environment is presented in Fig. 4-9.

ATMEGA16
Header
Board

Freescale
PBMCUSLK

peripheral board

Vcc = 5V

GND

PB0 to LED 1

Atmel ICE JTAG

 184 Laboratory work 1 - First project: LED blink

 Fig. 4-9 Atmel Studio 7 starting page

 To create a new project the “New project…” link found on the left side, as presented
in Fig. 2-9, needs to be selected. The same behavior is available if using the menu bar:
File -> New -> Project. The new project type that will be used is “GCC Executable
Project”. Also the location path and project name can be specified as presented in Fig.
4-10:

Embedded Systems Design and Development 185

 Fig. 4-10 Atmel Studio 7 new project dialog

 The next step into creating a new developing project is to specify the microcontroller
to be used. Select the Atmega16 device by searching it into the list of microcontrollers
supported by Atmel Studio 7. In order to narrow down the search use the Device family
combo box to filter the list for Atmega family. Such an example is presented in Fig. 4-11:

 Fig. 4-11 Atmel Studio 7 microcontroller selection

 After the project is successfully created, the development studio adds a template code
file to the project containing only the main function. In order to view the project structure
with the files referred by the project select the “Solution explorer” setting either by finding

 186 Laboratory work 1 - First project: LED blink

it on tab in the right part of the application or by using the menu View -> Solution Explorer
(hotkey CTRL+AL+L). This usually shows the solution explorer on the right of the
applications as shown in figure:

 Fig. 4-12 Atmel Studio 7 with project created and solution explorer present

 The next step is to configure some options of the newly created project. In order to
avoid some issues during programming the compiler optimizations have to be disabled.
There are many positive aspects when using compiler optimizations and in many situation
are quite recommended. In our situation it is best to avoid the compiler optimizations
mainly because we need to be concentrated on the functionality of the applications rather
than on performance.
 In order to access compiler optimizations a right click on the project is necessary (in
our case on GccApplication1 in project explorer) with the selection of Properties in the
right click menu. To reach compiler optimizations select Toolchain from the left and under
AVR/GNU C Compiler select optimization. From the Optimization Level combo-box
select (None –O0) for optimization level. A preview of the dialog for this issue is
presented in Fig. 4-13:

Embedded Systems Design and Development 187

 Fig. 4-13 Atmel Studio 7 compiler optimizations

 The next important project configuration that needs to be taken care of is the selection
of the Tool to be used for debugging. Having the previous screen we used to configure
the compiler optimizations select Tool option from the left. The following screen should
appear:

 Fig. 4-14 Atmel Studio 7 tool selection

 188 Laboratory work 1 - First project: LED blink

 In Fig. 4-14, under the “Selected debugger/programmer” combo-box two
options should be available (depending if the Atmel ICE debugger is connected via USB
to the PC): the Simulator and the Atmel ICE debugger. The choice of this combo-box
should not be permanent. If in any moment the student should want to use the simulator
instead of the hardware JTAG debugger, he can do so by selection the corresponding
options. The only observation is that in Simulator mode, the developing environment is
disconnected from the target. In order to be able to download the code on the
microcontroller and to debug it, the Atmel ICE debugger (in our case) should be selected.
 When selecting the Atmel ICE debugger more options regarding this tool will appear
on the same dialog. From the interface combo-box the JTAG option needs to be selected.
Moreover, special attention needs to be taken on the value of the JTAG clock. A safe
value to use would be 200 kHz, as the default value should be. An example of the settings
that should be configured in this dialog is presented in the next figure:

 Fig. 4-15 Atmel Studio 7 tool selection and configuration

 After these configurations are done, the project should be saved in order to use the
same configured environment next time.
 Another important aspect that needs to be discussed is how the target and the
connection between the target and the JTAG should be tested. This testing method should
usually be used before starting working with the target but usually only once at the
beginning of it, if malfunctioning is detected. The testing method involved bringing up
the Device programming dialog by selecting from main menu Tools -> Device
Programming. The dialog that should be brought up is similar to the one presented in the
next figure:

Embedded Systems Design and Development 189

 Fig. 4-16 Atmel Studio 7 Device programming dialog

 In this dialog, mainly in the upper part, in the first opening, usually only the tool
remains selected (as Atmel-ICE in our case). Having Fig. 4-16 as an example, in the
“Device” combo-box select ATmega16 and on the interface select JTAG if not already
selected. After the selections press Apply and if the connections are in order than no error
message should be displayed. In order to further verify the JTAG communication press
read on the “Device Signature” region in order to read it from your ATMEGA16
microcontroller. A valid serial number should be read in case of a good communication.
Moreover, in order to assure that the voltages are properly applied, the Target Voltage
should be read by using the appropriate button. Having all of this information obtained,
one can draw the conclusion that the JTAG communication with the target microcontroller
is working properly.
 Having all of this configured we can be assured that the project is suited for
development. Note that this configurations should only be made once for the same project.
Giving the fact that this laboratory tends to use a constructive, building, approach this
newly created and configured project should be used for all the coming laboratory works.
 Having the first project created in order to take it to running on target, it first must be
compiled and built. This is done by accessing the menu Build -> Build Solution. The very
used shortcut key for this operation is F7. The result of the compilation is presented in the
Output tab on the bottom of the Atmel Studio 7 screen as shown in Fig. 4-17:

 190 Laboratory work 1 - First project: LED blink

 Fig. 4-17 Atmel Studio 7 Compilation result

 Having a closer look on the output of the compilation in Fig. 4-17 we can observe
not only the results on the last line but also, in case of successful compilation, the amount
of code that the executable uses and also the amount of data memory needed, with values
in both bytes and percentage. The percentage is calculated relatively to the maximum
amount of memory available for the currently selected microcontroller.
 This information is important to an embedded developer not only to know if the code
can fit the flash of the microcontroller or if the data memory is enough, but also to
calculate the differences if compiler optimizations are used. Currently our only interest is
knowing if the program fits the available memories.
 The next step into developing our application is to write the necessary code. Taking
a closer look at the generated code of the newly created project we can identify a very
important include statement:

 Code listing 4-1 Register definition header include

#include <avr/io.h>

 This line of code includes, into the code file it is written, the header file containing
the definitions of register names of ATMEGA16. Beside this include, further includes
should always be present into every ATMEGA16 project:

Embedded Systems Design and Development 191

 Code listing 4-2 Necessary includes

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>

 All the necessary includes that should be present in almost every file within an
ATMEGA16 project are the ones presented above. The first include was detailed before.
The second include header file contains the definitions of the interrupt vectors of
ATMEGA16. The last include contains the file defining delay functions. In order for this
included library to properly work the CPU frequency should be properly defined using:

 Code listing 4-3 CPU Frequency definition

#define F_CPU 14745600UL

 This definition “informs” the delay library of the frequency the processor is clocked
by. In our situation, as presented above the clock frequency is 14.7456 MHz or 14754600
Hz.
 A full list of the inclusions and definitions that should be present in manly all the
files referring to the ATMEGA16 periphery can be the following:

 Code listing 4-4 CPU Frequency definition

#define F_CPU 14745600UL

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>

 As stated before, the module that will be used in order to blink the LED, is the GPIO
module.
 The digital lines of the GPIO module are organized in ports. The ATMEGA16
microcontroller has 4, 8 bit lines wide ports (PORTA, PORTB, PORTC, PORTD). The
main characteristic of a port line is the direction. For example if we need to drive a LED
connected to a port line, meaning we would like to establish a high or low logical value
in order to power on or off the LED, the line is considered to be an output line. In another
example, if we want to read the logical value of a line, for instance when connecting a
push button to a port line and wanting to read the state of a push button, the line is
considered to be an input line.
 Another important aspect is the one related to how a port line can be driven, when it
is an output port line, or how it can be read, when it is configured as an input line. This,
and the configuration of the direction of a port line can be accessed through a collection
of registers. All the registers have the same structure, as in Fig. 4-18, but with different
meaning. Every port of the microcontroller has the same collection of registers. Each bit
of the register controls the “characteristic” of the corresponding digital line of the port.

 192 Laboratory work 1 - First project: LED blink

 Fig. 4-18 ATMEGA16 General GPIO register structure

 The above structure is available for all the registers corresponding to the GPIO
module of ATMEGA16. The first aspect to be analyzed, as discussed above, is represented
by the direction of a port line. As stated in the documentation of ATMEGA16 the DDRx
registers are related to this aspect as that writing a logic 1 to one bit of this register
configures the selected line as an output line. Also, writing a logic 0 to one bit of this
register configures the corresponding line as an input line. The DDRx registers (where x
identifies the port: A, B, C or D) have the same structure as in Fig. 4-18.
 Another important set of registers for the GPIO module of ATMEGA is the set of
PORTx registers (where x identifies the port: A, B, C or D). These registers are only to
be used for the lines which are configured as output. These registers define the logical
value that the line has. For example, writing a logic 1 on one of the bits of a PORTx
register, the corresponding line of port x is driven to logic 1. Same algorithm applies for
writing a logic 0 value.
 A register set related to the PORTx register set presented above is the PINx register
set. The PINx registers are used when working with input lines. From these registers we
can determine the logical value of a line (pin) of a microcontroller. Reading this registers
practically offers the logic state of a line or pin configured as input. For example, when
reading logic 1 of a bit in a PINx register the corresponding pin has a logic 1 value applied
on it. Some goes for 0 logic.
 More information about how the GPIO system works may be found in the
ATMEGA16 datasheet on chapter named I/O Ports [14]

 ASSIGNMENT 2: Read the ATMEGA16 documentation and find the registers that
have to be configured in order to drive a LED connection to line PB0 of the
microcontroller. Establish and explain the values to be written in the registers.

 A pseudocode implementation of a program that blinks the LED can be the
following:

 Code listing 4-5 LED blink main program flow

void main()
{
 init_led(); // initialize the port direction using DDRx register
 while(1)
 {
 led_on(); // turn on led, logic 1 on coresponding bit from PORTx register
 delay(); // delay loop
 led_off(); // turn off led, logic 0 on coresponding bit from PORTx register
 delay(); // delay loop
 }
}

Px0 Px1 Px2 Px3 Px4 Px5 Px6 Px7

Embedded Systems Design and Development 193

 The init_led pseudocode function represents the configuration of the directions of the
pin the LED is connected to. The led_on and led_off represent the code lines needed to
drive the pin the LED is connected to in order to turn the LED on or off.
 The delay function may be implemented using the provided library functions with
the following prototypes:

 Code listing 4-6 Delay functions prototypes

void _delay_ms(int milliseconds);
void _delay_us(int microseconds);

 ASSIGNMENT 3: Write a microcontroller program that blinks a LED with a period
of 500 ms using delays.

4.3 Laboratory work 2 - Push buttons

 The previous laboratory work was aimed at making the first steps into embedded
programming. As an application a simple LED blink example was used. In order to do
this the GPIO system was presented, but only for output. This laboratory work also
concentrates on the usage of the GPIO system but for input. The best application for the
demonstration of the input function of the GPIO is the read of a push button.
 The schematic that needs to be implemented in order to connect a push button to a
GPIO port of a microcontroller is relatively simple. Besides a push button and a
microcontroller, only a resistor is needed to complete the schematic as presented in the
following figure:

 Fig. 4-19 Push-button connection to microcontroller GPIO port

 As it can be observed in Fig. 4-19 a pull-up resistor is used to pull the line between
the microcontroller and the push button to logic 1 value. Analyzing the schematic we can
state that when the push button is not pressed the logic level of the input GPIO line of the
microcontroller is logic 1, mainly because the voltage is Vcc. The resistor is needed in

µC

Vcc

R

 194 Laboratory work 2 - Push buttons

order to limit the amount of current flowing through the microcontroller. This resistor is
mandatory and without it the microcontroller may be damaged.
 When the push buttons is pressed the current flows through the resistor into ground
thus the other terminal of the push button is connected directly to ground. This flow will
establish a near to 0 V voltage value on the line which will be seen as logic 0 by the
microcontroller.
 In conclusion, when the microcontroller sees a logic 1 value on the input line the
push button is not pressed and when it sees a logic 0 value the push button is pressed.
 The schematic presented in Fig. 4-19 is already implemented on the peripheral board,
except the connection with the microcontroller. There are 8 buttons available on the
peripheral board and they are exported to one of the headers surrounding the breadboard
in the middle. The buttons are denotes as PB1, PB2… PB8. The pull-up resistor is
embedded on the peripheral board so the only connection that needs to be made is the
connection between the buttons on peripheral board and the ATMEGA16 header board.

 So, in the next step let’s choose, for example, button PB1 on the peripheral board and connect it to the
GPIO line PD6 on pin 20 of the ATMEGA16 header board. This implies that we need to search where the
PB1 button is mapped on the peripheral’s board headers. In addition we should maintain the connection

previously made in Table 8 Laboratory applications planning

Laboratory work 1 - First project: LED blink where a LED on the peripheral board was
connected to the ATMEGA16 header board on line PB0, pin 1 of ATMEGA16. The LED
will be used in order to test the functionality of the button. The result schematic of this
current laboratory work can be summarized as following:

 Fig. 4-20 Push button connection block schematic

 ASSIGNMENT 1: Make the connections described above. Search the correct pins
both of the peripheral board and on the ATMEGA16 header board. Have the laboratory
teacher verify the connections before powering up the system.

 As discussed in the previous laboratory work each port line may be configured to be
an input line or an output line. The output configuration was used in the previous
laboratory work in order to control the LED. In the output mode, the programmer may
control the logic value of the specified line.

ATMEGA16
Header
Board

Freescale
PBMCUSLK

peripheral board

Vcc = 5V

PB0 to LED 1

Atmel ICE JTAG

Embedded Systems Design and Development 195

 The input mode of the GPIO line may be used not to control the logic value of the
line but to read the logic value applied to that line from external devices. This way the
programmer may use to interface in a basic way with the external environment.
 In order for a GPIO line to be used as an input line the direction needs to be set first.
As presented in the previous laboratory work the DDRx (where x may be the port
identifier A, B, C or D) registers are responsible for the pin direction. Each bit of this
register control the direction of the corresponding line of that port. A logic 1 value written
for a bit of the register sets the direction as output for the corresponding GPIO line. A
logic 0 value written for a bit of the register sets the direction as input for the
corresponding GPIO line.
 After the direction of the line has been set the programmer may easily read the status
of the desired input pin using the PINx registers. The structure of the PINx registers is
identical to the structure of DDRx or PORTx. The role of the PINx registers is that it
reflects the input logic value that was read from the GPIO pin corresponding to the bit of
the register. If the pin has a 0 logic value applied on it, then the corresponding bit in the
PINx register will be read as 0. If the pin has a 1 logic value applied on it then the
corresponding bit in the PINx register will be read as 1.
 In our case, in the end, when the corresponding bit in the PINx register we will use
has the value equal to 1 then the push button is not pressed and when the bit is read as 0
then the push button is pressed. This is practically how the embedded programmer may
detect a push/release of a button.
 So, practically, a simple pseudo code application example on how to read the state
of a push button could be the following:

 Code listing 4-7 Simple Push button application pseudo-code

int main(void)
{
 …
 init_buttons();
 while(1)
 {
 …
 if (((PINx & (1 << b)) == 0) // if button_pressed
 {
 // some code to do when button is pressed
 }
 …
 }
 …
}

 The code above could work very well but only in an ideal environment using ideal
push buttons and other parts. In the real life such a code may give false pressings of the
push button. The only reason why this may happen is because the push button is a
mechanical part which is extremely unpredictable and unstable. The transient mechanical
processes when pushing/releasing the button may give many false contacts. When

 196 Laboratory work 2 - Push buttons

pressing a push button, the actual signal that reaches the microcontroller’s pin could like
the following:

 Fig. 4-21 Push-button electrical transient process

 In Fig. 4-21 before the red arrow the button is not pressed thus the line of the
microcontroller is set at the high voltage value as logic 1. In the moment represented by
the red arrow the user presses the button. In that moment the value of the voltage should
drop in order to reach 0 logic value. This process is not instantaneous and lots of
variations occur because of the mechanical parts of the push buttons. These parts induce
a transient process into the line. The problem with this situation is that the signal crosses
the middle value of the voltage that separates the logical values detected by the GPIO line
of the microcontroller. This leads to the fact that the microcontroller may detect not one
but more transitions from logic 1 to logic 0 and back to logic 1. Using the pseudo-code
example in Code listing 4-7 the program running on the microcontroller may sense
multiple pressings of the push button. This happens mainly because the signal on the pin
bounces between the high and low logical values. In order to eliminate this inconvenience
the bouncing between the values have to be ignored until the signal is stabilized. The
transient process cannot be fully eliminated electrically but it can be compensated by
software in order to ignore the signal bounce.
 The technique used to compensate the signal bounce is called de-bounce and consists
of a trivial algorithm. The idea is to wait an amount of time until the signal is stabilized
immediately after the microcontroller senses the first time the signal drops from one logic
value to another, in our case from logic 1 to logic 0. The amount of time to wait for the
transient process to be over is usually established empirically. It may vary from hundreds
of microseconds to tens of milliseconds. In most cases a wait time of maximum 1
millisecond should suffice.

V_LO

V_HI

V_M

Voltage

Time

Button released

Button
Pressed

Transitory process

Button is released

Embedded Systems Design and Development 197

 Code listing 4-8 Push button application pseudo-code with de-bounce

int main(void)
{
 …
 init_buttons();
 while(1)
 {
 …
 if (button_pressed) // if button_pressed
 {
 delay(1 millisecond max);
 if (button_pressed)
 {
 // some code to do when button is pressed
 }
 }
 …
 }
 …
}

 The idea in Code listing 4-8 is to wait for the transient process to be finished when
sensing a buttons pressed. After the wait is over, the programmer should check again if
the button is pressed in order to be sure that there was a real pressing of the button by the
user and not a parasitical press.
 The first application that we will implement is a simple LED switch. The push button
will be used as a switch. One press of the push-button will power on the LED and the next
press will power off the LED. Practically each time the button is pressed the LED is
toggled: if the LED is power on then it should be power off and if the LED is power off
then the LED should be powered on. The LED state should be kept the same between
button pressings.
 A preliminary pseudo-code of such an application that also integrated de-bouncing
could be the following:

Code listing 4-9 Preliminary pseudo-code LED switch application

int main(void)
{
 …
 init_buttons();
 init_leds();
 while(1)
 {
 …
 if (button_pressed) // if button_pressed
 {
 delay(1 millisecond max);
 if (button_pressed)
 {
 // switch on or off the led depending of previous state
 led_toggle();
 }
 }
 }
}

 198 Laboratory work 2 - Push buttons

 Our current application states that the LED should be switched on or off depending
on its previous state when a user presses the button. The code presented above works but
not clearly as intended. If we analyze the code above we can first find that while the button
is pressed by the user, the LED is toggled several times and after the user releases the
button, the state of the LED is unclear, it is unpredictable. This happens because the user
(human) is much more slower than the microcontroller running at 14.7456 MHz which
leads to a lot of executions of the code inside the last if statement several times, not only
one time, as intended. A very simple solution to this issue is to introduce another line of
code that waits until the user releases the button before toggling the LED. An adapted
version of the code snippet above may be the following:

Code listing 4-10 Preliminary pseudo-code LED switch application

int main(void)
{
 …
 init_buttons();
 init_leds();
 while(1)
 {
 …
 if (button_pressed) // if button_pressed
 {
 delay(1 millisecond max);
 if (button_pressed)
 {
 while(button_pressed); // wait for user to release button
 // switch on or off the led depending of previous state
 led_toggle();
 }
 }
 …
 }
 …
}

 ASSIGNMENT 2: Based on the explanations presented above implement the LED
switch application on the microcontroller. The applications role is to switch on/off the
LED when pressing the push-button.

 ASSIGNMENT 3: Connect all the LEDs of the peripheral board to the ATMEGA16
header board along with 2 push buttons. Implement a small application which will move
the LED light from one LED to another by pressing one the buttons. One button should
move the LED up, the other one should move the LED down. Only one LED should be
on at a time. When the LED turned on is in one of the edges rounding should be applied.
 Example situations:

- When LED1 is on and the user pressed the button down, LED1 should be turned
off and LED2 should be turned on

- When LED2 is on and the user pressed the button down, LED2 should be turned
off and LED3 should be turned on

Embedded Systems Design and Development 199

- When LED3 is on and the user pressed the button up, LED3 should be turned off
and LED2 should be turned on

- Regarding rounding:
o When LED8 is turned on and the button down is pressed, LED8 should be

turned off and LED1 should be turned on
o When LED1 is turned on and the button up is pressed, LED1 should be

turned off and LED8 should be turned on
The state of the LEDs should be stable between the button presses by the user.

4.4 Laboratory work 3 - Timer, compare match, interrupts

 The TIMER is one of the most important peripheral module of a microcontroller
because of its high applicability. The main role of a timer module is to generate high
accuracy, periodical or non-periodical events. Another important role is to measure time
intervals of external events and also to count the occurrences of the events.

 Because of its importance the timer module will have a dedicated laboratory work. Furthermore, this
laboratory work will also be concentrated on introducing interrupts. The finality of this laboratory work will

be to blink the LED with a desired accurate frequency. In Table 8 Laboratory applications planning

Laboratory work 1 - First project: LED blink, the same kind of application was
implemented but using software delays. A simple time analysis experiment may reveal
the fact that in the first laboratory work the LED blink was not exactly accurate. Using an
oscilloscope one can identify that the LED blink interval is not always the same due to
software unpredictability. This drawback may be overcome by using the TIMER module.
 Before presenting the TIMER module of ATMEGA16 a short introduction into the
general idea of a TIMER is needed. The base component of a TIMER is a counter. It is
important to mention that the timer and counter are not the same. The counter is the basic
component of a timer but nothing more. The counter is a sequential circuit which is
practically a register with an additional logic that allows its content to be incremented and
decremented [23] upon the arrival of a clock edge. A block schematic of a counter can be
found in the following figure:

 200 Laboratory work 3 - Timer, compare match, interrupts

 Fig. 4-22 Counter block schematic

 As it can be seen in the previous figure the main component of a counter is a register
(which is made out of D type flip-flops). Above the register, additional logic is added
which changes it into a counter. On each edge (rising or falling) of the clock signal, the
content of the register is incremented. The initial value is usually zero which is loaded
into the register upon reset signal is applied. The value of the counter can be read via Q0-
Q3 terminals [24]. Practically in Fig. 4-22 a 4 bit counter is presented.
 One of the most important signals presented in the above figure is the OVR signal
which is set to logic 1 once the counter has overflowed. An overflow of a counter appears
when the maximum value of the register is reached and it is increment by one.
 The maximum value that can be stored in a register which is n bit wide is:

2 1

 (4-1)

 Having the maximum value of the data stored in an n bit wide register and the
frequency F that is applied to the counter, the time needed for the overflow to occur (the
time needed by the counter to count from value 0 to the maximum value) may be:

2 1

 (4-2)

 The OVR signal may be used to generate periodic interrupt events but it is not
configurable. The tOVR parameter is dependent on the counting frequency F and the width
of the register. Only the counting frequency may be modified in order to modify the
overflow period but it is not enough, thus it cannot be used to obtain a user defined time
period.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

E

CLK

RESET

OVR

Q3 Q2 Q1 Q0

REGISTER

Embedded Systems Design and Development 201

 In order to be able to obtain a user defined time period with high precision, additional
components and logic needs to be added to the classic counter module, thus obtaining the
basic schematic of the timer having compare match features.

 Fig. 4-23 Timer with compare match block schematic

 In Fig. 4-23 a simple version of a timer is presented emphasizing the compare match
feature. As it can be observed, the main component is a counter register which has the
Fcount frequency as input. The width of the register is of n bits. In the presented schematic
another register is connected, thus the one designated as Compare register. This register
contains a value preprogrammed by the developer which is compared using the
Comparator at each clock edge (positive or negative). The moment the counter register
contains a value equal to the value in the compare register, an event is generated by the
comparator module. This event can be used as an interrupt event in order to generate user
defined time period with very high precision. The only unknown term in the above
schematic is the value, which we will designate as N, which should be written into the
Compare register in order for our timer to generate the desired time period. This value
may be calculated as follows:

∙ (4-3)

Where t is the desired time period and F is the input count frequency applied to the timer.
 It is important to mention that the above schematic is highly simplified in order to be
easier to explain the basic functionality of the timer module. Other features could be added
into this context:

- The counter could be reset when a compare match interrupt has occurred
- The counter could be restarted from zero when a compare match interrupt has

occurred
- An additional frequency divider could be added in order to divide the input

frequency of the time
 These features are usually present in a timer module inside a microcontroller.
 The ATMEGA16 microcontroller has two 8 bit wide timer/counter modules and one
16 bit wide timer/counter module. For the purpose of this laboratory work TIMER1 of
ATMEGA16 will be used. This is the 16 bit wide timer of ATMEGA16 and the compare
match function described above is implemented and denoted as CTC (Clear Timer on

n bit counter
Fcount

n bit register
Compare register

COMPARATOR

n

n

MATCH IRQ

 202 Laboratory work 3 - Timer, compare match, interrupts

Compare match). Beside the CTC operating mode, TIMER1 also supports other operating
modes like PWM, free run, input capture.
 The input frequency of the timer is the peripheral clock which is practically the global
clock of ATMEGA16, in our case it will be the frequency generated of the quartz
oscillator.
 The first application that we will discuss is an application where we will want to
blink the LED with a chosen, fixed and accurate period. We will consider a period of
100ms and the fact that ATMEGA16 is clocked using a quartz crystal with on oscillation
frequency of 14.7456MHz. As stated above, for such an application, TIMER1 of
ATMEGA16 will be chosen thus it has the CTC operating mode and is 16 bit wide.
Moreover, the CTC operating mode will be used along with the Compare Match Unit A
where the compare match register is represented by OCR1A (the top counting value of
the counter will be OCR1A). The OCR1A register is 16 bit wide and is accessible by
using 2 registers that split the most significant 8 bits from the least significant 8 bits
(practically splitting it in half). In this case the OCR1A value is formed by using register
OCR1AH for the most significant byte and OCR1AL for the least significant byte. Having
this in mind, the value of the compare match must not exceed 65535 (it must fit within 16
bits).
 The compare match value that needs to be written into the OCR1A register pair may
be calculated using (4-3) where N is the OCR1A value, t represents the desired period of
time (in seconds) and F is the input frequency of the timer (in Hz).
 The configuring of the timer must first start with the operation of writing the correct
value of the OCR1A register pair.
 The next steps in configuring the timer are related to the registers TCCR1A and
TCCR1B. The first aspect that can be configured using these registers is represented by
the Waveform Generation Mode which may be specified through bits WGM13, WGM12,
WGM11 and WGM10 which are split between the TCCR1A and TCCR1B registers. The
available Waveform Generate Modes for TIMER1 are presented in Table 46 of the
ATMEGA16 documentation, page 112 [14]. Regarding our application, the suitable
Waveform Generation Mode should be mode 4 which implies the above presented bits to
have the value 0100.
 Another important aspect is the configuration of the timer’s clock source. It is
important to mention that the moment the timer has its clock source configured it
immediately starts counting, thus this should be the last configuration operation to be
made. Information on what clock sources are available for TIMER1 can be found in Table
48 of the ATMEGA16 documentation, page 113 [14]. In our case the internal clock source
will be used which is represented by the global frequency of the microcontroller, more
exact, the frequency of the oscillator, 14.7456MHz in our case. Before being applied to
the counter submodule of the timer, the clock source may be divided. A number of 5
prescaler values are available: 1, 8, 64, 256 and 1024.
 The actual prescaler value has to be chosen in concordance with the calculated value
of the OCCR1A compare match value. If the calculated value does not fit into a 16 bit
number then a higher prescaler value needs to be used and the value recalculated.

Embedded Systems Design and Development 203

 Let’s use, for example, the first prescaler, which is 1. Practically in this case there is
no division applied to the input clock signal, thus the frequency applied to the timer
remains at 14.7456MHz. Considering this and applying formula (4-3) the resulting value
for the OCCR1A compare match register pair could be:

1 0,1 ∙ 14.745.600 1474560
16	8000

(4-4)

 As it can be observed, the calculated value (represented in both decimal and
hexadecimal format) does not fit into the 16 bit register pair. A solution to this issue would
be to lower the clock frequency in order to lower the compare match value by applying a
prescaler. Let’s continue the algorithm and choose the third prescaler which is 64. In this
case we would obtain the following clock frequency:

14.745.600	 	 64 230.400 (4-5)

 Using the value of the frequency calculated before in (4-5) and reapplying formula
in (4-3), the resulted value for the compare match OCCR1A could be:

1 0,1 ∙ 230.400 23.040 5 00 (4-6)

 The value we have obtained in (4-6) can easily fit into the 16 bit wide OCCR1A
register pair. As stated before the value of OCCR1A is divided into 2 registers OCCR1AH
(for the most significant part of OCCR1A) and OCCR1AL (for the least significant part
of OCCR1A). A short pseudo-code on how such a value may be written correctly into the
2 registers may be the following:

 Code listing 4-11 Dividing match value into most and least significant parts

void timer_init()
{
 // some code
 unsigned int value = 0x5A00;
 // some code
 OCCR1AH = (value >> 8) & 0xFF;
 OCCR1AL = (value & 0xFF);
 // some code
}

 The idea behind the algorithm is to obtain the most significant part of the number by
using bitwise operations like shifting and applying masks. For example the most
significant part of a number may be obtained by right shifting it with the necessary number
of bits (8 in our case) and applying an isolation mask.
 In conclusion the correct value for the OCCR1A compare match register pair has
been calculated and the according prescaler value has been chosen. These operations
should suffice in configuring the TIMER1 module of ATMEGA16.

 204 Laboratory work 3 - Timer, compare match, interrupts

 The only aspect remaining to be discussed is how the programmer can find out when
a compare match event has occurred. This can be obtained either by using the interrupt
system and configuring the timer accordingly or by using the flag register TIFR of the
timer module. Both of these solution will be presented during this laboratory work.
 The first solution that will be used is the one based on polling the correct flag in TIFR
register. The flag responsible for the compare match event on OCCR1A is bit 4 denoted
as OCF1A. When this bit is read as 1, the compare match event has occurred. After the
programmer detected such an event he must then reset this flag by writing logic one on it
as stated in the documentation of ATMEGA 16 on TIFR register at pages 115 and 116.
 An example code of the polling method may be the following:

 Code listing 4-12 Timer compare match polling method

int main(void)
{
 // some code
 // initialization code
 while(1)
 {
 if (((TIFR & (1 << 4)) != 0)
 {
 // compare match on channel 1 has occurred
 // code to be done on this event
 TIFR |= 1 << 4; // reset flag
 }
 }
 // some code
}

 ASSIGNMENT 1: Write a microcontroller software that blinks a LED with a period of 500ms with
high accuracy using the TIMER1 module. The timer related functions should be written inside a library

(which, for example, is made out of a timer.c code file a timer.h header file). Information on how a C library
has to be written check the The C Programming Language manual by B. Kernighan and D. Ritchie [1]. The

LED should be blinked within the infinite while loop in the main function using a polling method of the
capture event. Test your program using the hardware connections in Table 8 Laboratory applications

planning

Laboratory work 1 - First project: LED blink. Validate your program by measuring the
LED blink period using an oscilloscope.

 The second part of this laboratory work is dedicated to presenting the general concept
of an interrupt system mainly focused on the interrupt system of ATMEGA16.

Embedded Systems Design and Development 205

Fig. 4-24 Interrupt diagram

 In Fig. 4-24 a diagram on how an interrupt process works is presented. On the left
side, the main program thread is presented. This code can be seen as the main program
that is running on the microcontroller. It is presented in ATMEGA16 assembly language
in order to simplify the explanations. As it can be observed, the microcontroller’s core
receives an external event during the execution of instruction 4. Usually the instructions
have an atomic execution which means that the execution of an instruction cannot be
interrupted.
 Immediately after the current instruction finishes its execution the core senses the
external event and an interrupt is generated. This interrupt implies the fact that the core
freezes its execution and jumps to an interrupt service routine function which has the
necessary code to treat the external event. The core then starts the execution of the
interrupt service routine’s code as it can be observed on the right side of Fig. 4-24. The
interrupt service routine function has a RETI (Return from Interrupt) instruction at the
end of the code. This marks the ending of the interrupt service routine function and the
core will return from the call back to the point where it was interrupted. After the return
from the ISR function the core resumes its execution.
 The interrupt service routine is merely a function, like any other function written by
the programmer, which contains the necessary code for treating the external event.
 This whole process may be seen as a classic function call with the difference that the
core is the caller of the function, not the developer. An interrupt service routine thus is
only called by the microprocessor’s core when an external interrupt is generated. The
developer does not need to call this function. The developer only needs to preconfigure
this function into the interrupt controller of the microcontroller using dedicated API
functions and/or registers.

Main program thread

STD Y+2,R1

IN R29,0x3E

IN R28,0x3D

MOVW R30,r18

LDI R24,0x37

STD Y+1,R1

MOVW R30,R24

ORI R18,0x01

LDD R18,Z+0

LDI R31,0x01

LDI R25,0x00

STD Z+0,R18

IN R0,0x3F

PUSH R0

PUSH R1

ADIW R24,0x01

SBI 0x18,0

CLR R1

STS 0x0061,R25

CBI 0x18,0

OUT 0x3F,R0

RETI

POP R1

POP R0

External
event Jump to ISR

ISR

Return from ISR

ISR Function

 206 Laboratory work 3 - Timer, compare match, interrupts

 The above method has some clear disadvantages. One important drawback is that
only one interrupt service routine may be defined, thus even if there are more than one
interrupt sources only one ISR function may be defined. In this case the programmer will
have to differentiate the interrupt source by writing appropriate code. This can be easily
resolved by using the concept of vectored interrupts.
 In case of vectored interrupts, upon the arrival of an external event, the core doesn’t
jump to a fixed ISR routine. The core jumps to a lookup table placed in memory where it
chooses the ISR routine address based on the source it was interrupted by. Using this
approach for different interrupt sources different interrupt service routine functions may
be defined. This concept is presented in the following diagram:

 Fig. 4-25 Vectored interrupt diagram

 As it can be observed in Fig. 4-25 when the microcontroller received an interrupt, it
first searches the correct interrupt service routine function address after identifying the
interrupt source. Immediately after the function address is found in the interrupt vector
lookup table, the core jumps to its address thus executing the function. This solution offers
more flexibility for the developer.
 A very simple use case for interrupts could be an application where a microcontroller,
running on batteries, has to blink a LED once per second. Giving the fact that most of the
time the microcontroller has nothing to do, and only once per second it has to blink the
LED, for the idle time the microcontroller could switch into a low power mode, thus
reducing battery consumption. In this case the microcontroller could switch back to active
mode, once per second, with the help of an interrupt, in order to switch the LED.
 Another important advantage when using interrupts could be the fact that polling
methods are eliminated. In many cases polling an event results in a failure (the event did
not occur… yet) thus the processor could do something else not just polling for a slow
occurring event. Using interrupts can eliminate unnecessary polling of events.
 In a microcontroller the peripheral modules, such as timers, may or may not generate
interrupts to the core. The core may or may not consider these interrupts. All of these
aspects are related to how the programmer configures the microcontroller through code.

Main program thread

STD Y+2,R1

IN R29,0x3E

IN R28,0x3D

MOVW R30,r18

LDI R24,0x37

STD Y+1,R1

MOVW R30,R24

ORI R18,0x01

LDD R18,Z+0

LDI R31,0x01

LDI R25,0x00

STD Z+0,R18

IN R0,0x3F

PUSH R0

PUSH R1

ADIW R24,0x01

SBI 0x18,0

CLR R1

STS 0x0061,R25

CBI 0x18,0

OUT 0x3F,R0

RETI

POP R1

POP R0

External
event

Jump to ISR

ISR

Return from ISR

ISR Function

ISR 1 Vector

Interrupt vector lookup table

ISR 2 Vector
Address of ISR

function

ISR 3 Vector

ISR 4 Vector

Embedded Systems Design and Development 207

 The ATMEGA16 microcontroller has a general interrupt flag which can configure
the core to enable/disable the possibility for it to consider any interrupts. This implies that
in order for the core to consider interrupts this flag must be set by the programmer. There
are dedicated intrinsic function that control this aspect as presented in the following code
snippet.

 Code listing 4-13 ATMEGA Global Interrupt Control Macros

sei(); // enable ATMEGA global interrupts
cli(); // disable ATMEGA global interrupts

 The above macros control the state of the global interrupts. It is important to mention
that after reset the interrupt system is disabled. In order for any interrupt source to be taken
into consideration by the core, the interrupt system must first be enabled using one of the
“defines” above.
 In order to declare an interrupt servicing routine for ATMEGA16 a certain syntax
has to be used. In the prior versions of Atmel’s developing environment, versions like
AVR Studio 4, the syntax for declaring an ISR function is the following:

 Code listing 4-14 AVR Studio 4 ISR declaration syntax

SIGNAL(SIG_<vector_name>)
{
 // your ISR code here
}

 As it can be observed the syntax is similar to the syntax used for declaring a C
function with the difference that no return type is specified (not even void) and no
parameter name or type is specified. The interrupt vector is presented similar to a function
parameter. An example of such a function which declares an ISR routine for TIMER1
output compare match for channel A can be found in the following code snippet.

 Code listing 4-15 AVR Studio 4 ISR declaration syntax example

SIGNAL(SIG_OUTPUT_COMPARE1A)
{
 // your ISR code here
}

 The declarations for the names of the interrupt vectors for ATMEGA16 can be found
in the header file iom16.h (at the last quarter of the file), which is usually included through
the inclusion of header file io.h. In the iom16.h header file a number of 20 interrupt vectors
are defined, which the only ones are permitted to be declared using the above syntax.
 The above syntaxes have become deprecated since Atmel has released the new
version of the developing environment, Atmel Studio 7. A new syntax has been issued,
which can be used for declaring interrupt servicing routines. The new syntax allowed can
be found in the following code snippet.

 208 Laboratory work 3 - Timer, compare match, interrupts

 Code listing 4-16 Atmel Studio 7 ISR declaration syntax

ISR(<vector_name>_vect)
{
 // your ISR code here
}

 The difference is first given by the reserved macro name ISR (instead of SIGNAL)
and by the fact that the vector is slightly different denominated. An example should be
clearer:

 Code listing 4-17 Atmel Studio 7 ISR declaration syntax example

ISR(TIMER1_COMPA_vect)
{
 // your ISR code here
}

 Both the deprecated interrupt vector names and the new interrupt vector names are
present in the header file iom16.h.
 The last and important operation that needs to be done when dealing with interrupts
is to also enable the interrupt signaling for the specific peripheral device that is needed to
generate the interrupt. In this case we will continue to use TIMER1 and thus use the output
compare match channel A as an interrupt source. For TIMER1, the interrupt generation
mask can be configured via TIMSK register through the OCIE1A flag. If this flag is set
to logic value 1 then, when a compare match event occurs, an interrupt for vector
TIMER1_COMPA_vect is generated.

 ASSIGNMENT 2: Modify the timer library and the application developed earlier in
order to blink the LED only using interrupts. The following steps should be considered:

- In the initialization part of the main program call the global interrupt enable
function

- Search the appropriate interrupt vector name in the iom16.h header file
- Declare the interrupt servicing routine in the C file of the timer library
- Reduce the main program loop to an infinite empty loop
- Add to the timer initialization function in the timer library C file the enabling of

the timer interrupt using the TIMSK register
- Write the LED blink code inside the interrupt servicing routine

 Test your program using the same setup and validate the signal using an oscilloscope.

 ASSIGNMENT 3: Modify the previous assignment in order to blink the LED inside
the main program loop but only when an interrupt occurs. Use a flag that is set as 1 in the
interrupt flag (when an interrupt occurs). The main program should test this flag and when
it is found 1 the main program loop should turn on or off the LED using the same logic.
After the LED has been blinked the main program should reset the flag at value 0. The
flag should be defined as volatile in the timer.c library file and it should be declared with

Embedded Systems Design and Development 209

the extern keywork in the timer.h file. This way the main program can have access to this
flag variable.

4.5 Laboratory work 4 - Control 2 digit 7 segment display

 This laboratory work will introduce another peripheral device external to the
microcontroller. The role of this laboratory work is to present the 7 segment digit display
but using a very simple method for implementation.

 Fig. 4-26 Kingbright 2 digit 7 segment display module [25]

 The 7 segment digit display [25], as presented in Fig. 4-26, is used a variety of
applications and is practically implemented using LEDs and is frequently used for
implementing simple digital alarm clocks. The module that we will use is a 2 digit 7
segment display but only one digit will be used.
 For this module, the 2 digits are completely separated among the module’s pins. Each
segment of the digit is practically a LED. All the segments may be connect with a common
anode or a common cathode. In our case all the segments (LEDs) are connected with a
common anode mapped on one of the pins and the cathode terminals are all mapped to 7
pins (being 7 segments). The actual internal schematic of a digit for the module in Fig.
4-26 is presented in Fig. 4-27:

 Fig. 4-27 Common anode segment connection

 Each LED in the schematic practically represent a segment of the digit. The segments
are usually referenced using letter from ‘a’ to ‘g’ or more depending on how many

 210 Laboratory work 4 - Control 2 digit 7 segment display

segments are used to display a digit. In our case, 7 segments are used, and they the
represented as following:

 Fig. 4-28 Digit segment notation

 In the datasheet [25] of the 7 segment display module that we will use, the pinout,
the schematic in Fig. 4-27 and the notation of the segments in Fig. 4-28 are combined into
a detailed schematic. Such a schematic is presented in Fig. 4-29 but only for one digit
(first digit).

 Fig. 4-29 Detailed digit schematic

 The pinout of the actual part (Kingbright DA04-11EWA) that we are going to used
is the following:

a

b

c

d

e

g
f

4

Common anode

15 13 1 3 2 14 16

a b c d e f g

Embedded Systems Design and Development 211

 Fig. 4-30 Kingbright DA04-11EWA two digit 7 segment display module pinout

 In the above pinout, pins 1, 2, 3, 4, 13, 14, 15 and 16 are related to the first digit and
the rest are for the second digit. We will concentrate on the first digit which has the
common anode connected to pin 4 where the rest of the pins are the cathodes of the LED
segments.
 The above information and schematics may be used to make the necessary
connection between the first digit of the module and the ATMEGA16 microcontroller.
Pin 4 (the common anode of the first digit) will be connected to the power line of the
circuit (Vcc) in our case to 3.3V. The cathode lines of the digit should be connected to the
same port of the microcontroller and in order for the bit mapping to be easy they should
be connected in alphabetical order. A connection pin mapping could be the following:

ATMEGA16
Kingbright

DA04-11EWA
Port
Line

Pin
number

Digit
segment

Digit
pin

PA0 40 a 15

PA1 39 b 13

PA2 38 c 1

PA3 37 d 3

PA4 36 e 2

PA5 35 f 14

PA6 34 g 16

PA7 33 NC NC

Table 9 Connection of 7 segment display to ATMEGA16 pin map

a

b

c

d

e

g
f

a

b

c

d

e

g
f

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

 212 Laboratory work 4 - Control 2 digit 7 segment display

Fig. 4-31 Digit mapping on 7 segment display

 Handling a 7 segment digit display is similar to handling 7 LEDs connected to a port
of the microcontroller. In our case, giving the fact that all the LEDs have common anode,
a LED will be on, when on the corresponding cathode, 0 logic will be applied and off,
when on the same cathode, logic 1 will be applied.
 The only thing that needs to be taken into consideration is what should be the pattern
for turning on or off the LEDs in order to form a digit. The pattern to use is presented in
Fig. 4-31. If we take as an example digit 3, we can state that segments denoted as a, b, c,
d, g need to be on and the rest of the segments, denoted as f and e, need to be turned off.
Another example could be digit 7 where segments a, b, c should be turned on and
segments d, e, f and g need to be turned off.
 Considering these examples, a mapping table needs to be constructed in order to
determine what value should be written into the output register of the microcontroller’s
port in order to switch on or off the required segments. Such a table should look like Table
10 where only the example for digits 3 and 7 are completed.

a

b

c

d

e

g
f

a

b

c

d

e

g
f

a

b

c

d

e

g
f

a

b

c

d

e

g
f

a

b

c

d

e

g
f

a

b

c

d

e

g
f

a

b

c

d

e

g
f

a

b

c

d

e

g
f

a

b

c

d

e

g
f

a

b

c

d

e

g
f

Embedded Systems Design and Development 213

 g f e d c b a
 Bit mask HEX

 7 6 5 4 3 2 1 0

0

1

2

3 1 0 1 1 0 0 0 0 10110000 B0

4

5

6

7 1 1 1 1 1 0 0 0 11111000 F8

8

9

Table 10 Segment mapping table

 ASSIGNMENT 1: Complete the above table for all the digits based on the
explanations in this laboratory work.

 After the encoding table has been established the implementation of a library
handling the 7 segment digit display is trivial. The table above should be implemented as
a byte array containing the numerical representation of the bit masks from the above table.
The hexadecimal numerical representation can be found in the table in the last column.
For example on position 3 of the table numerical value 0xB0 should be contained. Such
an example of an array may be found the following code snippet:

 Code listing 4-18 Example declaration of digit mapping array

#include <stdint.h>

static const uint8_t digitmap[10] = {
 TBD_0,
 TBD_1,
 TBD_2,
 0xB0,
 TBD_4,
 TBD_5,
 TBD_6,
 0xF8,
 TBD_8,
 TBD_9
 };

 In the example only the numerical value for digit 3 and 7 have been written, the rest
should be added by the attendees based on the mapping table. Using such a structure, one
can easily find a digit mapping value by addressing the mapping table. For example, if the
mapping value for digit ‘3’ is required then a simple addressing like digitmap[3] should
suffice.

 214 Laboratory work 4 - Control 2 digit 7 segment display

 Beside the declaration of the structure above the digit library should also contain a
function for initializing the port line that are connected to the segments and a function
which displays a certain digit on the module. An additional function could be considered
which clears the digit (turns off all the segments).

 Code listing 4-19 Function prototypes for 7 segment digit display library

void init_digit(void); // initialize the port lines
void display_digit(uint8_t digit); // display the digit given as parameter
void clear_digit(void); // clear the digit on the module

 The initialization function should mainly set the correct value in the port direction
register in order to configure as output GPIO pins the lines connected to the 7 segment
display module. After the initialization of the direction, the programmer should consider
the fact that the segments should be turned off in order to offer a clean start.

 ASSIGNMENT 2: Based on all the explanations above implement a library
(containing a .h header file and C code implementation .c file) which handles a 7 segment
display module. Use the above example for what functions should be exported.

 ASSIGNMENT 3: Using the program implemented for the previous laboratory
work where the LED is blinked with a period of 1 second, and using the digit display
library previously developed, implement a small program that counts from 0 to 9 using
the 7 segment display to show the current value of the counter. The counter should change
the value once per second. Practically the application would be a 10 second counter using
the 7 segment display module for viewing the value of the counter. From the previous
laboratory work, the last exercise should be used as a starting point (where the LED is
blinked via the interrupt handler). The seconds counter should be incremented and
displayed using the digit library in the interrupt servicing routine function of the timer.

 ASSIGNMENT 4: Modify the previous assignment in order to change the digit
displayed on the 7 segment display, not in the interrupt servicing routine, but in the main
program loop. This should be done using a flag to communicate between the interrupt
servicing routine and the main program. Such a situation has been implemented in
Laboratory work 3 - Timer, compare match, interrupts.

Embedded Systems Design and Development 215

4.6 Laboratory work 5 - Read 4x4 keyboard 16 keys

 Another important and yet trivial peripheral device is the subject of this laboratory
work. The simple matrix keyboard is presented by this laboratory work along with
methods on how to use it in an embedded project.
 The matrix keyboard is practically a matrix of interconnected push buttons with no
additional logic or other circuits. The matrix keyboard is available in many shapes and
sizes but the most popular for embedded usage are the 4x4 or 3x3 matrix keyboard. For
this laboratory work we will use a 4x4 matrix keyboard such as the one in Fig. 4-32.

Fig. 4-32 4x4 Matrix Keyboard

 The schematic of the matrix keyboard as well as the additional connections that need
to be made are presented in Fig. 4-33. The grayed part of the schematic in Fig. 4-33 is the
actual internal schematic of the keyboard in Fig. 4-32. The keyboard has in this case 8
pins exported outside the chassis. Having the keyboard orientation as in Fig. 4-32 the
pinout is the following:

1 Column 0
2 Column 1
3 Column 2
4 Column 3
5 Row 0
6 Row 1
7 Row 2
8 Row 3

Table 11 Keyboard pinout

 It is important to make the observation that giving the fact that the keyboard is a
passive component, no Vcc or ground line is needed.

 216 Laboratory work 5 - Read 4x4 keyboard 16 keys

Fig. 4-33 4x4 Matrix Keyboard Schematic

 There are 8 terminals exported from the keyboard’s chassis: 4 lines for the columns
and 4 lines for the rows as presented in the schematic. In order to drive the keyboard by
the microcontroller, the columns need to be connected to output GPIO lines of the
microcontroller and the rows have to be connected to input GPIO lines of the
microcontroller. It is important to mention that the connection could be made vice versa
(columns to input lines and rows to output lines). We will use the first solution as
suggested by the previous schematic. The connection between the microcontroller and the
matrix keyboard could look like the following:

Vcc

Vcc

Vcc

Vcc

ROW 0

ROW 1

ROW 2

ROW 3

COL 0 COL 1 COL 2 COL 3

Embedded Systems Design and Development 217

Fig. 4-34 4x4 Microcontroller and keyboard interconnection schematic

 As it can be observed the entire PORTA of the microcontroller will be used. The first
part of the port (PA0-PA3) will be used as output while the second part (PA4-PA7) will
be used as input.
 Taking a look over Fig. 4-33 and Fig. 4-34 a short analysis over some aspects needs
to be considered. The first aspect is represented by the pull-up resistors present on the row
lines (corresponding to the input line of the microcontroller). A pull-up resistor is used
when a certain line is desired to be maintained at logic “1” (the resistor is only used to
limit the flow of the current through the microcontroller). In Fig. 4-34 these resistors are
not present because the microcontroller has internal pull-up resistors that can be activated
when the port lines are configured as input.
 The other important aspect is represented by the diodes present on in column lines of
the keyboard (corresponding to the output lines of the microcontroller). These diodes are
used to offer additional protection when multiple keys are pressed and the output lines
that are connected by the key may have different logic levels. This situation could lead to
an electrical short inside the microcontroller which may damage the port lines. Again,
these diodes are not present in the final schematic but certain precautions will be taken in
software in order to compensate the diodes and to avoid hazardous situations.

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

1 2 3 4 5 6 7 8

ATMEGA16 microcontroller

PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7

 218 Laboratory work 5 - Read 4x4 keyboard 16 keys

 Connecting the matrix keyboard to a microcontroller is trivial task. The complicated
task when handling a matrix keyboard by a microcontroller is generated by the software.
The microcontroller will have to constantly scan the keyboard in order to detect if a key
was pressed. The next paragraphs will explain and exemplify how such a scan could be
implemented.
 In the idle state, when no key is pressed all the input lines of the microcontroller (row
lines) are stable at logic “1” with the help of the internal pull-up resistors of ATMEGA16.
So, in the idle state, when no key is pressed, the microcontroller will read logic “1” on
each row. The scan of the microcontroller consists in a procedure where the
microcontroller pulls down to logic “0” one of the column at a time (using the output lines
of the port) and reads the rows via the input lines. When a logic “0” is read then at the
intersection of the pulled down column line and the row read as “0” a button has been
pressed. A row is read by reading the logic value of the corresponding input line of the
microcontroller.
 In order to avoid hazardous situations the actual output lines will only be configured
at output, only one at a time and only when it is needed to be pulled down to logic “0”.
Furthermore, the internal pullup resistor for the input lines needs to be active before
reading the line. Practically the internal pullup resistors need to be kept activated all the
time.
 The scan is made periodically and continuously. One scan session is terminated either
when a push button event has been detected or when all the columns have been scanned.
The algorithm is also presented in the following flow chart:

Embedded Systems Design and Development 219

 Fig. 4-35 Matrix keyboard scan algorithm

 The implementation of the flow diagram presented in Fig. 4-35 is not very complicated. It only
involves working with GPIO lines similar on how it was presented in 0Table 8 Laboratory applications

planning

Laboratory work 1 - First project: LED blink and in 4.3 Laboratory work 2 - Push buttons.
 As a reminder only:

- GPIO line direction can be configured using DDRx registers
- GPIO lines configured as output can be set to logic level 0 or logic level 1 using

the PORTx registers
- The logic value applied on a GPIO line configured as input may be read using the

PINx registers.
 Only one aspect was not presented yet, regarding how the microcontroller’s internal
pull-up resistors can be controlled. The internal pull-up resistors may only be activated
for the GPIO lines that are configured as input (makes no sense otherwise). This feature
may be controlled by using the PORTx registers. If a GPIO line is configured as input and
the corresponding bit from the PORTx register is set to logic 0, (as default) then the

Set all port lines as
input.

Activate internal
pull‐up resistors for
pins connected to

rows

Set row counter (i)
to 0

Set direction to
output for pin

connected to row(i)

Set pin connected
to row(i) at logic

value ‘0’

Set column counter
(j) to 0

Read pin logic value
for column(j)

Is a key pressed
(is column(j) logical value ‘0’)

?

Start keyboard scan

Return the pressed key
YES

Has the final column being
reached

(is j equal to the last column)
?

NO
Increment column

counter j
(j++)

NO

YES

Has the final row being reached
(is I equal to the last row)

?

Increment row
counter (i)

(i++)

NO
Finish scan and return

no key pressed

 220 Laboratory work 5 - Read 4x4 keyboard 16 keys

corresponding input line will have the internal pull-up resistor disabled. If a GPIO line is
configured as input and the corresponding bit from the PORTx register is set to logic 1
then the corresponding input line will have the internal pull-up resistor enabled. For
example, if we would like to set the PA5 line as input with internal pull-up resistor enabled
we will have to write bit 5 of DDRA register as 0 and then write bit 5 from PORTA
register as logic 1.
 It is important to mention that, giving the fact that the keyboard is a matrix of
interconnected push buttons, debouncing needs to be applied as explained in 4.3
Laboratory work 2 - Push buttons.

 ASSIGNMENT: Based on all the explanations above implement a library
(containing a .h header file and C code implementation .c file) which handles the
keyboard. Also integrate the previous library handling the 7 segment display and
implement an application that displays the key pressed of the keyboard on the 7 segment
display digit.
 Hints:

- Implement a function that makes a single scan of the keyboard based on the flow
chart diagram in Fig. 4-35. This function should not be exported into the header
file

- Implement a function, which uses the previously developed function, which
implements the debouncing algorithm. It practically initiates a scan of the
keyboard and if a keypress is sensed it waits for debouncing and then it scans the
keyboard again. If a keypress was detected again then the function should return
the pressed key, otherwise a “no key pressed” value should be returned. This
function should be exported in the header file and this one should be used by the
main program to scan the keyboard.

- The main program should periodically scan the keyboard and if a key pressed is
detected it should display the corresponding key on the 7 segment display

- Add the characters A,B,C,D,E and F to the mapping table of the 7 segment display
library in order to display them on the module.

Embedded Systems Design and Development 221

4.7 Laboratory work 6 - UART interface

 This laboratory work is concentrated into developing the first microcontroller
application with serial communication. The serial communication, universal
asynchronous receiver transmitter (UART) RS-232 protocol, will be presented. The
outcome of this laboratory work will be an application where the microcontroller
transmits text data with a fixed period. Also, the microcontroller will received text data
over the serial interface and respond to some simple commands. Therefore both
transmission and reception will be considered which will function in blocking and non-
blocking modes, thus interrupts will be required.
 The UART protocol is probably one of the oldest communication protocols that are
still being used in many applications. Even though it was designed in the 1960’s the
protocol is highly used even now because of its simplicity, of course, nowadays used at
much higher speeds than in the ones in the 60’s.
 When communicating using a synchronous protocol, a clock signal is present, thus
the time synchronization is assured. In an asynchronous communication, the clock signal
is not present and the data must carry its own information for time synchronization [17].
In the simple UART communications with no hardware flow control there may be only 2
communicating partners which may switch their role from receiver to transmitter. Each
terminal has 2 dedicated lines for communication: a receive line (RX) and a transmit line
TX. These lines are connected as displayed in the following figure:

 Fig. 4-36 UART communicating terminals

 As stated before, giving the fact that no clock signal is present, the synchronization
needs to be carried out by the transmitted data. Not only is a time synchronization
necessary. Each communicating partner needs to sample the bits on the line with the same
sample rate which in communication is translated into a symbol rate. The same symbol
rate is needed to be configured in each communicating terminal. The symbol rate has the
BAUD as a unit of measurement. Moreover, another important measuring unit is the
transmission speed which is the number of bits transmitted per second (bps). It is
customary to use the term that “the BAUD of the serial communication is..” for example
9600 bps. Having a more practical approach, the main interest is actually on how long a
bit is in time. This is usually calculated using:

1

TERMINAL 2

TX

RX

TERMINAL 1

RX

TX

 222 Laboratory work 6 - UART interface

Having an example of a BAUD of 9600 bps the length of a bit is:

1 1
9600

104	

If having to watch the character ‘a’ being transmitted using an oscilloscope it should look
like in the following figure:

 Fig. 4-37 UART character serialization

 Using the oscilloscope to measure the time a bit occupies when having a BAUD of
9600 for bit sample rate the following result may be found as shown in the oscilloscope
capture:

 Fig. 4-38 UART bit measurement

Embedded Systems Design and Development 223

 In Fig. 4-38 the cursors were set to measure the one bit. The result is displayed in the
bottom right corner as being 104.0 us (or 9.61 kHz if converted to frequency). We can
notice that the value in kHz is almost equal to the value of the BAUD of 9600 bps.
 Both the transmitted and the receiver have be configured in order to both use the
same BAUD rate. Having differences between the sampling rates of the 2 communicating
partners may result in transmission errors.
 The next important aspect that needs to be discussed is how data is encapsulated by
the protocol in order to be transmitted over the line. This aspect is described by the
following table:

Length (bits) 1 5-9 1-2
meaning Start bit Data bits Stop bits

Table 12 UART protocol encapsulation

 As found in Table 12 the protocol starts with a start bit. This bit announces that a
new frame begins. Having an UART line inactive at logic “1” the start bit is usually
encoded as logic “0”. This is, in many cases, hard coded. The programmer usually cannot
modify the number, length or values of the start bit.
 Following the start bit are 5 to 9 bits of data. This is a configurable parameter and
needs to be the same on the receiver and transmitter. The data for which the protocol was
designed is represented by characters which may be encoded in 5 to 8 bits according to
the ASCII table. In the situation when 9 bits of data are specified, the 9th bit serves as
parity, which is calculated by both the transmitter and receiver. The receiver also
compares the calculated parity with the one transported by the 9th bit in order to detect
transmission errors. There may be an even parity or an odd parity. In an even parity the
9th bit is logic “0” when there is an even number of logic “1” bits in the data word. Same
algorithm goes for the odd parity. In many situations the parity is not used, thus the
number of data bits is set to 8 in order to disable parity. This is also usually configurable.
 After the data is sampled, the frame ends with one, one and a half or two stop bits
which are usually encoded as logic “1” bits. This option is also configurable.
 Having these explained, the following conclusions may be deducted:

- Both the receiver and the transmitter have to function on the same parameters
- Only 2 communication partners may be used in serial UART communication bus
- Both of the communication partners may be receivers or transmitters
- Each communication partner has 2 line: a reception line and a transmission line
- The start bit is only one with logic value “0” and is not configurable
- The configurable parameters are:

o Character length: 5,6,7,8 bits
o Parity

 Odd parity
 Even parity
 No parity

o Number of stop bits (1 bit, 1+1/2 bits, 2 bits)
o BAUD rate

 224 Laboratory work 6 - UART interface

- Same configuration needs to be present on both communicating partners
 The ATMEGA16 microcontroller has a dedicated peripheral module serving as an
UART interface. The full documentation of the USART interface of ATMEGA16 may be
found in the ATMEGA16 datasheet [14] at the USART Chapter. The pins that are mapped
for the USART interface are found on PORTD and are PD0 serving as RX (RXD) and
PD1 serving as TX (TXD).
 The next step is to make the necessary connections between the ATMEGA16 header
board and the peripheral board on one hand, and on the other hand, between the peripheral
board and the PC. A block schematic of the connections to be made is displayed in the
following block diagram:

 Fig. 4-39 UART connections block diagram

 It is important to mention that the signals (RX and TX) between the ATMEGA16
and the peripheral board have CMOS/TTL voltage levels. These levels cannot be used to
send data over long lines. A solution to this is to translate these signals into EIA voltage
levels where are more resistant to hazardous environments and can also be used to send
data over longer lines. In our case, EIA voltage levels are used to transfer the data from
the peripheral board to the host PC using a standard DB9 serial cable. The translation of
the signals is done on the peripheral board using a dedicated integrated circuit, like
MAX232 [18].
 The first set of connections can be made using the provided wires. The TXD pin
(PD1) from ATMEGA16 header board needs to be connected to the TXD header pin on
the peripheral board and the RXD pin (PD0) from ATMEGA16 header board needs to be
connected to the RXD pin on the header of the peripheral board. The signals of the
peripheral board are named from a peripheral point of view.
 The second set of connection can be mode using a standard DB9 serial cable in order
to connect the serial interface (through the DB9 connector) of the peripheral board to the
serial interface of the host PC.

 ASSIGNMENT 1: Make the necessary connections and have the laboratory
supervisor verify them.

 The next step is to concentrate on the software part of the ATMEGA16. Prior to the
configuration of the USART module of ATMEGA16, the direction of the responsible pins

ATMEGA16
Header board Peripheral board Host PC

TX

RX

RS‐232

TTL/CMOS voltage levels EIA voltage levels

Embedded Systems Design and Development 225

needs to set accordingly using the DDRD register. The PD1 serving as TXD pin, acting
as the transmission pin of the USART interface should be configured as output. The PD0
pin serving as RXD pin, acting as the receiver pin, should be configured as input. For
more information please read the I/O Ports Chapter in the ATMEGA16 documentation.

 ASSIGNMENT 2: Read the documentation regarding the USART module of
ATMEGA16 concentrating on the registers. Make a list with all the registers that should
be used for configuring the USART interface. The interface should be configured with
the following parameters: BAUD 9600 bps, 1 stop bit, 8 bits per character, no parity. Pay
special attention on the address sharing of registers UBRRH and UCSRC (URSEL bit
makes the difference).

 The first aspect in the configuration of the UART peripheral module of ATMEGA16
is to calculate the divisor value (UBRR) that the microcontroller will use to general the
BAUD. This can be done by using the formula provided by the producer which can also
be found the official documentation:

16 ∙
1

 (4-7)

Where:

 – represents the frequency of the ATMEGA16 internal clock in Hz (in our case 8
MHz)
BAUD – represents the actual baud rate (in our case 9600)
UBRR – represents the calculated value of the divisor which must not exceed 16 bit in
size (no more than 0xFFFF)

 The calculated baud rate divisor needs to be written into UBRRH:UBRRL registers
which separate the most significant byte and the least significant byte of the 2 byte value
UBBR. The UBRRH register, containing the most significant byte of UBRR and it needs
to be written first. The UBRRH register and the UCSRC register of the UART interface
share the same address space, they can be differentiated by the value of bit 7, URSEL, in
UCSRC register. According to the documentation when this bit is set to 0 the UBRRH is
accessible. When needing to access UCRSC this bit (URSEL) needs to be written to 1.
 Beside the UBRRH and UBRRL registers, here is a collection of configuration and
control registers which are used to control the UART interface. The full documentation
of these registers has to be read in order to fully understand the functionality. In the
following paragraphs only basic aspects will be discussed.
 The UCSRA register contains mainly flags that are important when configuring the
interface. The only bits that are significant for configuration are the U2X bit and MPCM
bit. These bits should be left as logic 0 in our case.

 226 Laboratory work 6 - UART interface

 Most of the configuration of the interface is done using the UCSRB register. We
should be focused on the bits RXEN, TXEN and UCSZ2. The RXEN and TXEN should
be written as logic one in order to enable the UART received (RXEN) and the transmitter
(TXEN). Even if, for now, we will only work with the transmitter, we should enable also
the receiver, thus it will be used in the coming laboratory works. The UCSZ2 register has
meaning only together with UCSZ1 and UCSZ0. The value formed by these three registers
define the size of the data word. The corresponding values can be identified in a table in
the documentation under the UCSRC register. For this laboratory work, considering that
we will use a data word of 8 bits wide, we will consider the bits having the following
values: UCSZ2 = 0, UCSZ1 = 1, UCSZ0 = 1.
 Pay attention that the UCSZ2 bit is contained in the UCSRB register but UCSZ1 and
UCSZ0 are contained in the UCSRC register. Regarding the UCSRC register practically
only these 2 pins need to be set to logic 1, the rest should be left as logic 0. The UCRSC
register contains bits that configure the number of stop bits, the parity settings, and the
synchronous/asynchronous operation of the interface. Letting the rest of the bits 0, beside
UCSZ1 and UCSZ0 will let the interface configured as asynchronous, no parity and 1 stop
bit.
 It is important to mention that the attendees must read the whole documentation of
these registers and not rely only on the explanations found in this laboratory work.
 The configuring of a register should be implemented inside a function with a proper
name. Once the interface is configured, the data transmit algorithm needs to be
implemented. The flowchart for the configuration of the UART interface may be the one
described in the following figure:

Embedded Systems Design and Development 227

 Fig. 4-40 UART initialization flowchart

 In order for the interface to transmit a character it needs to be written into the
transmission register: UDR. The same register is also used to read a newly arrived byte
from the serial interface. Writing a byte to the UDR register is not enough when making
a transmission over the UART interface. The programmer must also wait for the current
byte to be transmitted. This may be done by using the UDRE bit in UCSRA. This bit
informs the programmer when the transmit UDR data register is empty. After the UDR
register is written for transmission the UDRE bit becomes logic 0. After the interface
serializes the byte over the line the UDR data register becomes empty thus signaled to the
programmer with UDRE bit becoming logic 0. If the programmer does not wait for the
data to be transmitted over the serial line, more exactly for the transmission register to be
emptied by the interface, there is a risk for this register to be written when it is not empty.
In this situation the currently transmitted byte is corrupted and data overrun error is
signaled through the appropriate byte in UCRSA.
 A possible flowchart of the function capable in transmitting a byte over the UART
may be found in the following figure:

Set the pin directions for PD0
and PD1 accordingly for RXD

and TXD

Calculate the BAUD rate divizor

Gain access to UBRRH by
writing URSEL bit as 0 in UCSRC

Write the calculated divisor to
UBRRH and UBRRL

Write the necessary bits in
UCSRA

Write the necessary bits in
UCSRB

Write the necessary bits in
UCSRC with URSEL set to 1 to

gain access

 228 Laboratory work 6 - UART interface

Fig. 4-41 UART transmit flowchart

 When a character is transmitted over the serial line, in our case, using the connection
to the PC as presented in Fig. 4-39 , it can be displayed using a dedicated terminal
software. Such a software is Docklight Scripting which can configure a serial COM port
from the PC and can also be used for sending and receiving data.
 Docklight scripting is an easy to use but powerful serial terminal software. The main
advantages of Docklight scripting are:

- possibility to have access to all the settings of the serial port
- can function as a TCP/UDP client or server
- offers the possibility to define and send macros over the line (serial or network)
- has scripting features in order to simplify protocol interpretation
- offers good representation of unprintable characters
- byte interpretation may be ASCII, hexadecimal, decimal and binary

Fig. 4-42 Docklight main window

Is data register empty
(is UDRE bit set) ?

NO

Write the byte into
the UDR transmit
data register

YES

Embedded Systems Design and Development 229

The main window of Docklight offers quick access to all of the features. The command
bar contains practically all the necessary commands to configure, open, close and enable
data write to the serial port.

Fig. 4-43 Docklight command bar

 The active serial port along with its current configuration is displayed on the right
side of the bar. In order to modify the COM port or the configuration, a double click on
the COM port name (ex COM 2 in Fig. 4-43). The configuration window is displayed in
Fig. 4-44.

Fig. 4-44 Docklight COM port configuration window

 The configuration of the serial port does not imply also the opening of the COM port
for receiving and transmission. These operations are made using some of the buttons on
the command bar in Fig. 4-45. The buttons that present the most interest are: Start
Communication, Stop Communication, Keyboard Console On and Clear Communication
Window. These commands are highlighted in this order in Fig. 4-45.

Fig. 4-45 Docklight most used commands

 230 Laboratory work 6 - UART interface

 The most important commands found on the command bar are those responsible for
opening and closing the serial COM port. The first two highlighted buttons in the above
figure are responsible for these actions. The opening of the port is activated through the
Start Communication button and the closing the port through the End Communication
button. In the moment the COM port has been successfully opened the state is updated
below the button bar and Docklight scripting is ready to receive data through the serial
port which will be displayed in the main window in the currently selected format. The
window may be cleared using the Clear Communication Window. It is important to
mention that opening the communication window will only activate the receive process.
Any typed data in the main window will be discarded. In order to activate the transmission
of data using the keyboard the Keyboard Console On button must the accessed. The status
bar will be updated accordingly.
 The main window of Docklight scripting displays the received and transmitted data
in a strictly defined format. Each operating is preceded by a full timestamp along with a
tag that specified whether it is a transmission ([TX]) or a reception ([RX]). Usually the
transmitted data are colored in blue and the received data in red. The special characters
are also displayed using a simple syntax: the definition of the special character according
to the ASCII table between angle brackets. A sample of a short transaction displayed by
Docklight scripting may be the following snippet.

Code listing 4-20 Docklight scripting communication sample

04.01.2016 12:21:51.575 [TX] – data transmitted from to the microcontroller

04.01.2016 12:21:52.455 [RX] – data received from the microcontroller

 ASSIGNMENT 3: Open Docklight Scripting, configure the port for a BAUD rate
of 9600 bps, 8 bit per character, 1 STOP bit and no parity. Open the COM port and activate
the keyboard transmission feature.

 ASSIGNMENT 4: Write a C library (a c file with a header file) which contains an
initialization function for the UART interface and a function capable of transmitting one
byte over the serial UART interface. The project should than have 3 files for example:

- Serial.c – the C file containing the implementation of the functions
- Serial.h - the Header file containing the declarations for the function implemented

in serial.c file that need to be exported
- Main.c – the C file containing the main program and function

 The serial port needs to be configured as following: BAUD 9600 bps, 1 stop bit, 8
bits per character, no parity.
 Write a main program that sends the same character over the serial interface once per
second using the previous developed library. Test the program using Docklight scripting.
 ASSIGNMENT 5: Modify the previous assignment in order to communicate at a
BAUD of 115200 bps. Change the settings in Docklight scripting accordingly.

Embedded Systems Design and Development 231

 ASSIGNMENT 6: Implement and add to library a function which sends a standard
POSIX C string over the serial interface. A string is considered a character array
terminated with the 0x00 byte (or ‘\0’ character). The usage of the strlen function
recommended. The function prototype should look like the one in the following code line:

Code listing 4-21 Send string function prototype

void SendString(char *string);

 Test the function implementing an application that sends a string over the serial line
once per second. The string should contain a counter variable which increments after it
has been sent. Use sprintf to format a string a send it in a character array which should
then be sent over the serial interface. Suggestion code snippet:

 Code listing 4-22 Send string assignment suggestion code

void main()
{
 char text[100]
 uint32_t counter = 0;
 // some code

 while(1)
 {
 // some code
 sprintf(text, ”some text %d”, counter);
 counter++;
 // delay
 //some code
 }
 // some code
}

 The only operation left to be implemented is the reception of one byte over the serial
line. We will consider a blocking and a non-blocking approach. The easiest way is to use
the blocking approach.
 Practically a new function has to be developed which is responsible for the serial
reception and it should be blocking, thus waiting for a byte to arrive over the serial line
into the receive buffer. This information can be extracted from the RXC (Receive
Complete) bit in the UCSRA register. This bit is set to value logic 1 when unread data is
available into the receive buffer. In the rest of the time this bit is set to logic 0. Using this
information we can state that this is the most important status bit when implementing the
reception. Having this into consideration, the reception function flow chart diagram may
be the following:

 232 Laboratory work 6 - UART interface

Fig. 4-46 UART receive flowchart

 It is important to mention, in this case, that the register named UDR is used for
transmitting data over the serial line (transmit register) but it is also used for receiving the
data that has arrived over the serial line (receive register). It is important for the attendees
to distinguish these aspects. Even though it has the same name, there are practically 2
registers which are accessed by the same name. The difference is the access method. When
reading the register named UDR, the receive register is actually accessed. When writing
the register named UDR, the transmit register is actually accessed. This is normally
handled by hardware.
 The actual function that should implement the flow chart described in Fig. 4-46
should have the following prototype:

 Code listing 4-23 UART receive byte function prototype

uint8_t UART_ReceiveByte(void);

 It is again important to mention that the receive function, as presented in Fig. 4-46
and in Code listing 4-23, is blocking until a character is received, which means that the
execution of the microcontroller is halted until a character (byte) is received over the serial
line.

 ASSIGNMENT 7: Implement the function responsible for receiving a byte over the
UART interface according to the explanations above. Add to function into the already
developed serial library.

 The easiest method to test this function is to implement a trivial serial echo program.
This program practically waits for a character to be received over the serial interface and
after it has arrived it is sent back over the serial interface, thus the name “echo” is justified.

Is data available in the receive
register UDR

(is RXC bit set) ?

NO

Read byte from UDR
receive register

YES

Return byte

Embedded Systems Design and Development 233

The actual main loop of the microcontroller should implemented according to the
diagram:

 Fig. 4-47 UART echo main program loop

 ASSIGNMENT 8: Implement the UART echo main program used to test the
receiver function. In order to test this echo program open the Docklight Scripting
software, connect to the serial port the microcontroller is connected to and send character
over the serial line. In order for the transmission to be enabled in Docklight Scripting, the
“Keyboard Console On” button needs to be pressed or the Tools -> Keyboard Console On
menu needs to be accessed. The shortcut key for this operation is CTRL+F5. After the
transmission is enabled you can write the characters into the main window using your
keyboard. A successful test of the program and receive function is when a transmitted
character is returned back to the Docklight Scripting software.

 The next aspect to be discussed in this laboratory work is how to transform the echo
application to work using interrupts. The transmission will be left the way it is. The
reception is the actual operation that is most blocking and must be transformed in order
to be interrupt based. The first step is to find the appropriate interrupt vector responsible
for the UART reception interrupt and to declare the interrupt servicing routine similar to
how it was presented in Laboratory work 3 - Timer, compare match, interrupts. The only
difference is the interrupt vector.

 OPTIONAL ASSIGNMENT: Open the iom16.h header file and search the
appropriate interrupt vector name to be used for the UART reception interrupt.

 The interrupt vector that we will be use in this laboratory work is the one related to
the reception of a character over the serial UART interface. Searching the iom16.h could
lead to vector responsible for the UART reception interrupt: USART_RXC_vect. Having
the name of the interrupt vector, the actual definition of the interrupt service routine may
be the following:

Initialize UART interface

Read byte from UART
interface

Send received byte back
through UART interface

 234 Laboratory work 6 - UART interface

 Code listing 4-24 ATMEGA16 interrupt service routine for UART reception interrupt

ISR(USART_RXC_vect)
{
 // some code
}

 The reasonable question that could arise is what code should be written into the
interrupt servicing routine function? Giving the fact that this function is called by the core
when a byte is received over the serial interface, the obvious operation here should be to
read that character from the UDR register, store it in a global variable and announce the
main loop, using another global variable as a flag, when a new character has arrived. Keep
in mind that the global variables that are accessed from the interrupt service routine should
be declared as volatile.
 There are two main configuring operations that need to be done in order for this
interrupt service routine to be activated and taken into consideration of the core. Firstly,
the serial UART interface needs to be configured in order to send an interrupt signal upon
reception of a byte over the serial line. The responsible bit for this is RXCIE in UCSRB
register. Having this bit set as logic 1 instructs the serial UART interface to send an
interrupt signal to the ATMEGA16 core when data is received over the line. The second
configuring that needs to be done is to enable the global interrupt system of the core. This
is done by calling the following function before the serial interface is configured:

 Code listing 4-25 Global interrupt enable function call

int main(void)
{
 // some code
 sei(); // global core interrupt enable function
 //some code
}

 Having all of this written, the final discussion is on the main loop program which
most of the time must verify if new data has arrived by checking the flag written by the
interrupt service routine. If the flag has the correct value then the program should read the
newly arrived byte by accessing the global variable containing it (written by the interrupt
service routine). Having the new data, it should be transmitted back over the serial line
using the transmit function routine already presented in the serial library developed
earlier. The only operation left doing, is to reset the flag that announces the arrival of a
new character, actually, the flag variable written by the interrupt service routine function.
If this flag is not reset then the code will be stuck infinitely sending the last received
character over the serial line. A flow chart diagram of how the main loop program of the
interrupt based echo should look like is presented in the following figure:

Embedded Systems Design and Development 235

 Fig. 4-48 UART echo main program loop with interrupts

 ASSIGNMENT 9: Modify the serial interface library previously developed in order
to support UART reception using interrupts. Add the interrupt service routine into the
library and export the necessary variables to the main program through the serial library
header file (using the export statement). Modify the main program loop in order to have
the serial echo work with reception using interrupts. Use a volatile flag to communicate
the arrival of a new character from the interrupt to the main program loop and a volatile
variable that contains the actual character. The communication flag should be reset in the
main program loop after the new character has been read from the variable containing it.

 ASSIGNMENT 10: In order to make a better use of the UART communication let
us make the connections we had for the laboratory works handling the 7 segment display
which was connected at PORTA of ATMEGA16. Modify the interrupt based echo
application with the 7 segment display digit library integrated into the project and
implement an application which not only sends back over the serial interface the received
character but also displays the character on the 7 segment display digit module if the
character is a hexadecimal digit. Practically this application replaces the keyboard in
Laboratory work 5 - Read 4x4 keyboard 16 keys with the serial interface. Change the digit

Initialize serial
interface

Enable global
interrupts using

sei()

Is flag variable set by
interrupt service routine?

Check flag variable

NO

Get data from
global variable

written by interrupt
service routine

Send data back over
serial interface

Reset flag variable

YES

 236 Laboratory work 7 - Working with alphanumerical LCD display

on the display inside the main program loop. As used in the previous laboratory works,
have a flag variable responsible with the communication between the serial interface
interrupt servicing routine and the main program loop. An additional variable is also
needed where the interrupt servicing routine saves the newly arrived character which is
read by the main program loop. Use the same approach as in the previous laboratory
works.

4.8 Laboratory work 7 - Working with alphanumerical LCD display

 Until now, the display methods we have investigated were the 7 segment digit display
module and the serial terminal based on the UART interface. The first method is very
limited (it can only display 2 digits and has high current demands) and the second method
not only that it is uncomfortable but it also implies the connection to a host computer,
where a serial terminal software is running, which is also not user friendly. A much more
accessible method for a display interface will be presented during this laboratory work:
an alphanumerical LCD.
 Many embedded systems have an LCD as an interface display. LCDs may be
graphical or alphanumerical. The graphical LCD is a little harder to use than an
alphanumerical one which is why the latter will be presented in this laboratory work. The
LCD which will be presented is a 2 line alphanumerical LCD with an integrated controller
which is handled via an 8 bit parallel interface along with a couple of control signals. It is
important to mention that not all available LCDs are controlled the way this laboratory
work presents it. The communication method is usually dependent on the LCD controller.
The LCD controller that we will use is the popular Hitachi HD44780U [26] which will be
used on LCD similar to the one produced by Shenzhen Eone Electronics, the 1602A-1
LCD module [27, 28]. Such LCDs have a parallel bus exported on the pins for
communication along with some control signals. The pinout of this LCD family may be
the following:

Number Symbol Description Comments
1 GND Ground Usually a 5V power supply is needed. Check

module datasheet for details 2 Vdd Power Supply
3 V0 Contrast Connected to 5V through an adjustable resistor
4 RS Register Select High – Data, Low – Instruction
5 RW Read/Write High – Read, Low – Write (from/to LCD)
6 E Enable/Strobe signal Usead to enable data transfer/strobe
7 DB0

Data bus lines

Not used in 4 bit data transfer
8 DB1
9 DB2
10 DB3
11 DB4

Data bus lines may be used for 4/8 bit data
transfer. Only these lines may be used in 4 bit data
transfer mode

12 DB5
13 DB6
14 DB7
15 BLA Backlight GND Backlight power supply. Not necessarily 5V.

Sometimes 4.6V 16 BLK Backlight Power Supply

Table 13 LCD pinout

Embedded Systems Design and Development 237

 Based on their function, there 3 major groups of pins: data bus line pins,
communication control pins and power pins. Regarding the power pins, there are separate
pins for general LCD and backlight power supply. The LCD general power is assured by
pins 1 and 2 and usually according to the documentation only a 5V power supply may be
used. This is not a general rule, in some implementations a wide interval of power supply
values is permitted. This information is present in the datasheet. Same applies for the
power supply of the backlight of the LCD but this power supply is optional. The LCD
may be used without any problems without a backlight. One important pin that needs to
be taken into consideration is the V0 pin (pin 3) which is responsible for the contrast
adjustment. This pin should be connected to a power supply through an adjustable resistor.
 Another important group of pins is represented by the data line bus. The bus consists
of 8 data pins, thus being an 8 bit data bus. The special aspect about this data bus is that
it can function as a 4 bit data bus. Having this approach is of course slower than using an
8 bit data bus but fewer pins are required. The 4 bit data bus consists of the lines DB4-
DB7 (pins 11-14). The DB0-DB3 lines are not used in 4 bit data bus transfers.
 The last group of pins is represented by 3 control pins. One of the control lines is the
RS line which specifies whether the data on the bus lines is instruction or data. This line
should also be settled and stable during the transition of the E signal. A similar line is the
RW line which specifies whether a read or write operation is performed. When RW is
logic 1, then a read operation is performed and when the RW line is logic 0, a write
operation is performed. In most of the cases write operations are needed. Only 2 situations
are related to the read operation: the read of the internal status flag and current address
counter and the read of the character in the memory at the current address counter.
 The most important pin in communication is the enable E pin. This pin functions as
a strobe pin. According to the documentation [27], the time diagrams on page 5, the in
inactive state of line E is logic 0. After the data has been established and stabilized on the
data bus (4 or 8 bits), the LCD will sample the data when a transition of line E from 0 to
1 followed by a transition from 1 back to logic 0. As it was stated before this behavior is
similar to the behavior of a strobe line. The E line is a strobe/enable line not only for the
data lines but also for the RW and RS lines. A general and much more simplified example
of how the E lines needs to be driven is presented in the following diagram:

 Fig. 4-49 LCD general bus communication example

 As it can be observed in Fig. 4-49 the RS, RW and data bus lines are settled to the
correct and valid value during the inactive state (logic 0) of line E. After the lines are
considered stable the E line is used to enable/strobe the value through the 0 to 1 and back

 238 Laboratory work 7 - Working with alphanumerical LCD display

to 0 transition. During the time the E line is at logic 1 the LCD controller reads the data
present on the lines. Any changes of the lines during the E line is at logic 1 is forbidden.
A violation of this rule may result in unpredictable and unknown behavior of the LCD.
 When an 8 bit bus transfer is used then the whole byte will be sampled by the LCD
when the correct transitions are applied to the E line. On the other hand, when 4 bit bus
transfer is used, 2 operations will have to be performed in order to transmit the whole
byte. First, the most significant 4 bits of the byte will be applied on the DB4-DB7 data
lines followed by the correct transitions of the E line, then the least significant 4 bits of
the byte will be settled on DB4-DB7 data lines followed by the correct transitions of
control line E.
 Before working on the hardware, in order to better understand how the LCD works,
we will use a simulator to implement the communication protocol. The simulator, as
presented in Fig. 4-50, is web based and implemented by Dincer Aydin who made it
publicly available for everyone who is interested in teaching or learning to work with
these kind of LCDs [29].

 Fig. 4-50 LCD simulator screenshot [29]

Embedded Systems Design and Development 239

 As it can be seen in the screenshot above, the simulator offers the display of the LCD
as a result, as well as the CGRAM memory viewer and the current settings in the LCD
STAT section. In order to control the LCD the data and control lines are available for the
user. The data lines are the ones colored in red and the green lines are the control lines.
The correct transitions of the lines as requested by the protocol may be applied here and
the LCD will respond accordingly. Furthermore, important tips will be available in the
text boxes below the LCD. With the help of the documentation one could easily learn how
to control the LCD using this simulator.

 ASSIGNMENT 1: Using the documentation of the LCD and controller configure
the LCD on the web based simulator to work with both 2 lines, with a blinking cursor and
write “Hello World” on the first line and your name on the second line. Consider an 8 bit
wide data bus.

 ASSIGNMENT 2: Have the same requirements as in the previous assignment but
consider a 4 bit wide data bus.

 After a successful configuration and usage of the LCD on the simulator was made,
the next step is to connect the LCD to the microcontroller and use it in a real embedded
system environment. Again, as in the previous laboratory works, there are 2 main issues
to be addressed: the hardware connections that need to be made and the software
components that need to be written or integrated into the project. Giving the fact that the
communication protocol is slightly complicated and also that there are many commands
to be implemented for the LCD a specialized library will be used to handle the LCD.
 The starting point in making the schematic for connecting the LCD to the
microcontroller will be the combination between the schematic from Laboratory work 5 -
Read 4x4 keyboard 16 keys where the keyboard is connected to the microcontroller and
the schematic from Laboratory work 6 - UART interface where the microcontroller is
connected to the serial interface of the computer through the peripheral board. The
resulting block schematic for this laboratory work should look like the following:

 240 Laboratory work 7 - Working with alphanumerical LCD display

 Fig. 4-51 Block schematic

 With the help of the pinout of the LCD, presented in Table 13, the following
connection have to be made in order to connect the LCD to the microcontroller using a 4
bit bus:

- Pin 1 of the LCD connected to the common ground
- Pin 2 of the LCD, the Vdd power pin, has to be connected to a 5V power line (same

as the microcontroller)
- Pin 3 of the LCD, the V0 contrast pin, has to be connected to the 5V power line

through an adjustable resistor. In our case we will connect this line to the POT
header pin of the peripheral board which connects it to the onboard potentiometer

- For the data and control pins lines from PORTD and PORTC of the
microcontroller will be used as following

Microcontroller LCD

Pin number Pin name Pin number Pin name

18 PD4 11 DB4

19 PD5 12 DB5

20 PD6 13 DB6

21 PD7 14 DB7

16 PD2 6 E

17 PD3 4 RS

22 PC0 5 RW

Table 14 Signal interconnection between LCD and microcontroller

- The backlight power pin are not going to be connected
- The DB0-DB3 signals of the LCD are also going to be left not connected

ATMEGA16
Header board Peripheral board Host PC

TX

RX

RS‐232

TTL/CMOS voltage levels EIA voltage levels

4X4 Matrix
Keyboard

LCD

Embedded Systems Design and Development 241

 Regarding the software aspect of this laboratory work for controlling the LCD, as
stated before, an already developed C library will be given to the students. The LCD
library is structured as a standard C library with a code file and a header file. The library
is highly configurable and may control the LCD with any given connections. The
configuration of the library is made through a collection of preprocessor defines in the
header file. The most important defines related to the port lines that are connected to the
LCD. Each port line must be correctly specified in the header file. Another important
parameter in the library is the clock frequency of the microcontroller (the XTAL define –
in our case it should be set as 14745600UL, where the UL specifier denotes the fact that
the constant is to be considered as a long unsigned).
 As stated before, all the necessary defines that need to be configured are present in
the header file of the library.

 ASSIGNMENT 2: Add the provided library to the project. Open the header file of
the library (lcd.h). Make a list with the “defines” in the library that need to be configured
and have them verified by the laboratory instructor. Consider Table 14 as a reference
interconnection. Test the integration with the new library by writing a main function code
that configures the LCD with a blinking pointer. Write “Hello World” on the first row of
the LCD and your name on the second row of the LCD.

 ASSIGNMENT 3: Write an application which combines Laboratory work 5 - Read
4x4 keyboard 16 keys, Laboratory work 6 - UART interface and this current laboratory
work. The application should read the keyboard and display the pressed key on the LCD
and also send it over the serial interface as was implemented in the previous laboratory
work. The LCD should be configured to scroll the text over the lines. When the first line
is full, the software should switch displaying the next data on the second line. When the
second line is full, then the newly pressed key should be displayed on the last available
position after the whole text has been scrolled to the left losing the first character that was
previously displayed on the LCD.

4.9 Laboratory work 8 - Analog to Digital Converter

 This laboratory work is aimed at both introducing a new peripheral module of the
microcontroller to the students and at presenting an analog temperature sensor. There will
be 2 finalities for this laboratory work. One finality is represented by a digital voltmeter
application and the other will be a digital thermometer using the LCD for displaying the
temperature.
 The analog temperature sensor and the analog to digital converted have been
combined into a single laboratory work mainly because the analog to digital converted is
needed in order to read the temperature from the analog sensor. An analog temperature
sensor outputs an analog voltage level that is proportional with the outside temperature.

 242 Laboratory work 8 - Analog to Digital Converter

 Before working with the analog temperature sensor the analog to digital converter
(ADC) peripheral module needs to be presented first and the digital voltmeter application
is the best way for testing the functionality of the ADC.
 The analog to digital conversion is a set of operations which transforms an analog
input voltage into a binary code offered as output. This process in performed in 3 steps:
sampling, quantization and binary coding.
 Sampling is the first step of analog to digital conversion and consists into acquiring
values of the analog input usually at periodic moments in time. The values of the samples
are still continuous and belong to an infinite precision interval. The next step, the
quantization, is the one responsible in obtaining finite precision values of the samples.
The final step of the process is the binary coding which practically represents the values
obtained after quantization using numbers represented on a finite number of bits [19].
 The number of discrete values on which an ADC can represent the samples is
indicated by the resolution of the ADC. This parameter is one of the most important
characteristics of an ADC. For example having a resolution of an ADC of 10 bits means
it can convert an analog voltage value into 1024 different levels in an interval of discrete
values from 0 to 1023. The resolution can also be presented in volts, introducing the term
called the least significant bit voltage. The LSB represent the minimum change of the
input voltage in order for the output binary code to change. The resolution of the ADC
can then be defined as:

2 1
 (4-8)

Where
FSR – Full Scale Range defines full voltage range of the ADC
n – Represents the number of bits the ADC uses to encode the sample, practically the
resolution in bits.
 The Full Scale Range can be defined as follows:

 (4-9)

 Most of the conversions made are for voltages that are referenced to ground (0 V),
thus in this situation the FSR is usually equal to the reference represented by the highest
value of the voltage.
 Having a simple example where the high reference of the ADC is 3.3 V, the low
reference of the ADC is grounded and the resolution of the ADC is 8 bits, then we can
calculate the voltage resolution of the ADC:

3.3	
2 1

12.94	 (4-10)

Embedded Systems Design and Development 243

 Practically every increase of the input voltage by 12.94 mV causes the encoded value
of the ADC to change. Practically, in our example, the ADC only “feels” changes of 12.94
mV.
 As state before the actual output of an ADC is a number which is n bits wide, with a
maximum value of:

2 1 (4-11)

 So, practically, having the output of the ADC of a converted input voltage, denoted
as ADCVALUE the voltage represented by this discrete value, denoted as VRESULT can be
calculated as follows:

∙ ∙
2 1

 (4-12)

 Considering our previous example, let us continue by supposing that after the
conversion the ADC gives a result binary represented as 0b01111001 which in
hexadecimal is equal to 0x79 and in decimal as 121. The actual value of the voltage that
the ADC converted (VRESULT) may be calculated (in mv) as follows:

121 ∙
3300	
2 1

121 ∙ 3300
255

1565 (4-13)

 The ATMEGA16 microcontroller has an Analog to Digital converter module which
will be used in order to implement a digital voltmeter during this laboratory work. The
ADC of ATMEGA16 has 8 possible channels for conversion with different reference
voltage selection possibilities. The ADC also supports the possibility for converting
differential signals where the low reference is not considered to be grounded. During these
laboratory works we will not consider differential conversion thus only using channels
that have the low voltage reference grounded and the high voltage reference equaled to
the Vcc power line. The maximum resolution of the ADC is 10 bit.
 For this laboratory work we will use the maximum resolution of the ADC. The
reference of the ADC will be the AVCC power pin.
 Using the maximum resolution of the ADC means that 10 bits of data will be received
from the ADC module. The 10 bit unsigned integer will be given by the ADC module
within two 8 bit registers: ADCH containing the most significant part of the result (most
significant 2 bits) and ADCL containing the least significant part of the result. The result
needs to be stored into a 16 bit unsigned integer variable which will combine the 2
registers using bitwise operations.
 The next aspect that is to be discussed is related to the connections that have to be
made. The starting point will be the connection schematic used in Laboratory work 6 -
UART interface for serial communication as presented in Fig. 4-39. Having this as a
starting point the resulted block connection schematic for this laboratory application is
presented in Fig. 4-52:

 244 Laboratory work 8 - Analog to Digital Converter

Fig. 4-52 ADC connection block diagram

 The new connections added to Fig. 4-39, resulting Fig. 4-52, are the following:

- The power supply voltage for the entire circuit will be 5V
- In order to use the ADC the AVCC pin (pin 30) MUST be connected to the power

supply, in our case to the 5V line. Same goes for the ground pin next to it which,
of course, must be connected to the ground line (pin 31 needs to be connected to
ground)

- The analog input voltage should be connected to one of the ADC input channels,
thus, for simplicity, ADC0 channel 0 was selected in the previous diagram.
Practically, the PA0 pin (pin 40) will serve as ADC0 function and will be
connected to an analog voltage

 The analog voltage that will be applied to the ADC can be generated using an
adjustable laboratory power supply. The ground of the laboratory power supply MUST
be connected to the ground of the whole circuit. Another important aspect is that the
analog voltage MUST NOT EXCEED 5V. The interval in this situation should be [0, 5]
V. In order to verify the results, it is recommended that the laboratory adjustable power
supply has the possibility to display the actual voltage that it is applied. If not, then, a real
voltmeter should be used in order to be assured that the upper limit of the voltage interval
is not exceeded.

 ASSIGNMENT 1: Make the necessary connections and have the laboratory
supervisor verify them.

 The next aspect, which should be discussed, is related to the software part of the
application which should imply the configuration of the ADC of ATMEGA16, the starting
of the conversion, the collection of the raw data result, the calculation of the actual voltage
in mV and the printing of the result on the serial terminal.

ATMEGA16
Header board Peripheral board Host PC

TX

RX

RS‐232

TTL/CMOS voltage levels EIA voltage levels

Pin 10
Vcc

Pin 11
GND

Pin 30
AVcc

Pin 31
GND

Pin 40
PA0
(ADC)

GND5 V

GND5 V
Analog
voltage

Embedded Systems Design and Development 245

 ASSIGNMENT 2: Read the documentation regarding the ADC module of
ATMEGA16 concentrating on the registers. Make a list with all the registers that should
be used for configuring the ADC module. Furthermore, make separate list of the registers
used for starting a conversion, for waiting for the conversion to be finished and for
collecting the result. Define the algorithm for both operations (configuration, conversion).
The ADC should be used without interrupts, having completion checked by polling and
with a resolution of 10 bits.
 The ADC of the ATMEGA16 is not hard to use. It has a small number of registers
and the operation is almost trivial. The first aspect to be considered is the configuration
of the direction of the pins involved in ADC conversion. As stated before, the ADC has 8
channels for conversion and are all mapped on PORTA of the microcontroller. In this
case, the programmer has to be assured that the direction of the pins involved in
conversion is set to input.
 The configuration of the ADC is mainly done by writing the necessary bits in
ADCSRA register which is the ADC Control and Status Registers. The most important
bit that needs to be set prior to any usage of the ADC is the ADEN bit which enabled the
ADC module. Another interest from this register are the ADPSx bits which form the clock
division factor. Having a starting point, a divisor of 8 should be used having the bits
equaled to the following values: ADPS2 = 0, ADPS1 = 1, ADPS0 = 1. Practically, along
with the direction configuration, these writings into the ADCSRA register should suffice.
A flowchart of the function that implements the configuration of the ADC module may
be found in Fig. 4-53:

 Fig. 4-53 ADC initialization flowchart

 The slightly complicated part of the ADC is implementing a method to start the
conversion, wait until the conversion is complete and collect the result. The first step is
writing the ADMUX register by selecting the channel for conversion and the voltage
reference (AVCC in our case). The ADMUX register also contains a bit called ADLAR
which specifies whether the result is left or right adjusted. In this situation we will use the
result right adjusted by keeping the ADLAR bit logic 0.
 After configuring the ADMUX register, the conversion can be started by writing
ONLY the ADSC (ADC Start Conversion) bit in ADCSRA register. This bit should also
be used for checking whether the conversion has finished. According to the

Set the pin directions for PA0
as input (ADC0)

Enable the ADC (ADEN = 1 in
ADCSRA register)

Set the clock divisor (in
ADCSRA register)

 246 Laboratory work 8 - Analog to Digital Converter

documentation, after this bit is set to logic 1, the conversion begins. After the conversion
is finished this bit is reset to logic 0, by hardware, signaling the completion of the
conversion.
 When the conversion is finished the only thing remaining is collecting the result. We
have considered the maximum resolution of the ADC which translates into the fact that
the storage variable should be a 16 bit unsigned integer capable in holding the 10 bit result.
As stated before, the result is split into 2 registers ADCH and ADCL containing the most
significant part of the result and the least significant part of the result. The final result
needs to be obtained by combining the ADCH and ADCL registers using bitwise
operations. The only limitation of the microcontroller, which is presented into the
documentation, is that the ADCL register must be read first and the ADCH last. The
flowchart for reading a sample from one of the ADC channels may be found in Fig. 4-54.

Fig. 4-54 ADC conversion logic

Write the channel to be
converted in ADMUX

Set the voltage reference (in
ADMUX)

Set the Left Adjust Result
option (in ADMUX)

Start the conversion
(set ADSC in ADCSRA)

Has the conversion finished ?
Is the ADSC bit in ADCSRA set?

Read the ADSC bit in ADCSRA

NO

YES

Read least significant part of
result from ADCL

Read most significant part of
result from ADCH

Obtain final result combining
values of ADCH and ADCL
using bitwise operations

Embedded Systems Design and Development 247

 ASSIGNMENT 3: Write a C library (a c file with a header file) which contains an
initialization function for the ADC mode and a function capable of starting the conversion
and reading one raw sample value from the ADC on channel 0. Add the library to the
project previously developed. The new C library should have the following files which
should be added to the existing project:

- Adc.c – the C file containing the implementation of the ADC functions (init
function and read data function)

- Adc.h – the header file containing the declarations for the functions implemented
in adc.c file that need to be exported to the rest of the program

 Test the newly developed library responsible for interfacing with the ADC by
implementing a digital voltmeter which outputs the value in mV to the serial terminal and
on the alphanumerical LCD. As stated before, the test voltage should be brought from an
adjustable laboratory power supply.
 The main program should mainly read one sample from the ADC, calculate the
resulted voltage and print the result on a new line containing VOLTAGE = <value> mV.
Make use of the standard sprintf function in order to print into a string which should be
sent over the serial line using the required function in the serial library. The program
should print the voltage once per second. The newline is obtained by inserting the
characters ‘\r’ and ‘\n’.
 Do not use float or double when calculating the resulting voltage value. Use only
integers. ATMEGA16 does not have hardware support for floating point values.
 Use Docklight scripting, as in the previous laboratory application, to view the result.
 Calculate the value in mV similar to the examples in (4-12) and (4-13) taking into
account that the resolution of the ADC is 10 bit. Implement a function and add it to the
ADC library which converts the ADC data to voltage depending on the resolution. The
function should return a value in mV and take 2 parameters: a parameter containing the
ADC data read from the data registers and the resolution (the number of bits).
 The flow of the program should be the following:

 248 Laboratory work 8 - Analog to Digital Converter

Fig. 4-55 Digital voltmeter program flow

 The second and much more practical aspect of this laboratory work is to obtain the
current temperature of the environment using an analog temperature sensor. This is the
main reason that the first part of this laboratory work was aimed at presenting the analog
to digital converter. The temperature sensor that we will use is LM35 which outputs an
analog voltage level proportional to the outside temperature [30]. According to the
documentation the output voltage of the sensor has a scale factor of 10 mV per 1 degree
Celsius. Thus, the conversion formula from voltage to degrees Celsius could be the
following:

	 °
10

 (4-14)

Initialize serial interface

Initialize the ADC

Read one value from the ADC
channel 0

Calculate the resulting voltage
value

Use sprintf to compose the
string containing the voltage
value (that should be send
over the serial interface)

Send the string over the serial
interface

Wait aprox 1 second using
delays

Embedded Systems Design and Development 249

4.10 Laboratory project – Digital alarm clock

 This final section is dedicate to a lab project which is represented, in general, by an
alarm clock. This project aims at combining the lab works previously presented into a
fully functional device. The idea of this project is to show the students the utility of the
lab works presented above by constructing an alarm clock with multiple functions and
features.
 The main components that are available to the students are:

- 1 ATMEGA16 DIP40 microcontroller
- 1 LCD similar to 1602A-1 produces by Shenzhen Eone Electronics
- 1 LM35 temperature sensor
- 2 7 segment display modul
- 1 4x4 matrix keyboard
- LEDs
- Push buttons
- buzzer
- Serial interface MAX232 level translator
- Laboratory solder test board
- Tools
- Sockets
- Header pins
- Lab equipment
- JTAG debugger
- Software: Atmel Studio 7, Docklight scripting
- C library for LCD

 The project must have the following mandatory features:

1. Display current date and time on the first line of the LCD
2. Display the current temperature of the environment on the second line of the

LCD
3. Blink a LED once per second (when the current date and time is incremented by

1 second)
4. Send the date, time and current temperature over the serial interface once per

second
5. Set the current date and time by using 5 push buttons – 2 push buttons to select

the field (hour, minute, second, day, month, year) – 2 push buttons to
increment/decrement the field, 1 push button to enter and exit editing mode.
After the new date time has been set validation is mandatory

 250 Laboratory project – Digital alarm clock

6. After the press of one push button display the alarm time for 3 seconds then
switch back to the usual display (as in requirement 1)

7. When the alarm time has been reached use a LED to simulate the alarm. Use a
push button to stop the alarm

8. The calendar must be implemented correctly including leap years.

 All the mandatory features presented above must be implemented in order to pass the
project and receive a minimum grade. Also, for a minimal grade, students may implement
the schematic on a breadboard.

 The project should be extended by adding some of the following additional features:

1. Instead of simple push buttons, connect a 4x4 matrix keyboard and use it to
implement all the controls. Use the numbers on the keyboard instead of push
buttons to increment/decrement to set a certain field (hour, minute, second, day,
month, year). Also select the fields by used dedicated buttons on the keyboard if
possible. Any solution is accepted.

2. Instead of the LED to simulate the alarm, use a buzzer instead
3. Implement a serial protocol in order to set the current date time and the alarm time

over the serial interface
4. Connect 2 module of 7 segment display to the microcontroller using multiplexing

technique and display the current second. Additional components are provided if
needed, along with support.

 Student may implement the schematic on a solder laboratory test board and solder
components and make the wiring soldered. The components are NOT to be solder directly
on the board thus sockets will be provided. Students are encouraged to implement their
board on soldering test boards and not on breadboards and also to add additional features
to the project.

Embedded Systems Design and Development 251

Bibliography

[1] Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language:
Prentice Hall Professional Technical Reference, 1988, ISBN:
0131103709.

[2] Olimex Ltd, "MOD-LCD4.3 development board User's Manual, Revision E,"
Koninklijke Philips Electronics N.VSeptember 2012.

[3] NXP Semiconductors, "LPC178x/7x Preliminary Datasheet," Koninklijke
Philips Electronics N.VMay 2012.

[4] CooCox - Free/open ARM Cortex-M Development Tool-chain. (2015).
CoLinkEx User Guide. Available:
http://www.coocox.org/wiki/coocox/CoLinkEx/CoLinkEx-User-Guide

[5] Digi International, "XBeeTM/XBee-PROTM OEM RF Modules. Product
manual v1.xAx - 802.15.4 protocol," Digi International Inc. 2007.

[6] Digi International, "XBeeTM Series 2 OEM RF Modules Product manual
v1.x.2x - ZigBee Protocol," Digi International Inc. 2007.

[7] WizNet Co. Ltd, "WIZ820io User Manual," September 2011.
[8] SimCom, "SIM908-C Hardware Design," September 2011.
[9] NXP Semiconductors, "LPC178x/7x User Manual," Koninklijke Philips

Electronics N.VSeptember 2012.
[10] Electronic Industries Association. Engineering Department, "Interface

between data terminal equipment and data communication equipment
employing serial binary data interchange," ed. Washington: Electronic
Industries Association, Engineering Dept.,, 1969.

[11] SimCom, "SIM908 AT Command Manual V1.01," July 2011.
[12] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques, and

tools: Addison-Wesley Longman Publishing Co., Inc., 1986, ISBN: 0-
201-10088-6.

[13] Wikipedia. (2016). Mobile phone signal. Available:
https://en.wikipedia.org/wiki/Mobile_phone_signal

[14] Atmel, "ATmega16 Datasheet - 8 bit AVR Microcontroller with 16K Bytes
In-System programmable Flash," Atmel 2010.

[15] Atmel Corporation, "Atmel ICE User Guide," July 2014.
[16] Freescale Semiconductors, "MCU PROJECT BOARD STUDENT

LEARNING KIT (PBMCUSLK) - Prototyping Board with
Microcontroller Interface," Freescale SemiconductorJuly 2007.

[17] Adam Osborne, An Introduction To Microprocessors vol. 1: Osborne-
McGraw Hill Berkeley California, 1980, ISBN: 0-931988-34-9.

 252 Laboratory project – Digital alarm clock

[18] Texas Instruments, "MAX232x Dual EIA-232 Drivers/Receivers," Texas
InstrumentsFebruary 1989.

[19] M. V. Micea, "Proiectarea si implementarea sistemelor timp-real pentru
aplicatii critice de achizitie si prelucrare numerica de semnal," PhD,
Politehnica Timisoara, 2004.

[20] Analog Devices, "ADSP-BF537 Blackfin Processor Hardware Reference
Manual," Analog Devices Inc.March 2009.

[21] Analog Devices, "AD1871, Stereo Audio, 24-bit, 96 kHz, Multibit Sigma-
Delta ADC," Analog Devices Inc. 2002.

[22] Analog Devices, "AD1853, Stereo Audio, 24-bit, 192 kHz, Multibit Sigma-
Delta DAC," Analog Devices Inc. 1999.

[23] D. D. Gajski, Principles of digital design: Prentice-Hall, Inc., 1996, ISBN: 0-
13-301144-5.

[24] Oana Boncalo and Alexandru Amaricai, Proiectarea circuitelor digitale
folosind Verilog HDL – Analiza si Sinteza: Editura Politehnica, 2011,
ISBN: 978-606-554-331-7.

[25] Kingbright, "Part Number: DA04-11EWA - High Efficiency Red," January
2011.

[26] Hitachi Semiconductor & Integrated Circuits, "HD44780U - Dot Matrix
Liquid Crystal Display Controller/Driver," Hitachi Ltd 1998.

[27] Shenzhen Eone Electronics CO. Ltd, "Specification for LCD Module 1602A-
1," Shenzhen Eone Electronics CO. Ltd, 2014.

[28] AKIHABARA INC, "SC162a," 2011.
[29] Dincer Aydin. (2006). DjLCDSIM - Dincer's JavaScript LCD Simulator V

1.06. Available: http://www.dinceraydin.com/djlcdsim/djlcdsim.html
[30] Texas Instruments, "LM35 Precision Centigrade Temperature Sensors,"

Texas Instruments 2015.

	coperta
	primele_pagini_editura
	Indrumator

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ABSALOM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Albertus-Bold
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMedium-Italic
 /Algerian
 /ALIBI
 /AllegroBT-Regular
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BankGothicBT-Medium
 /BaskOldFace
 /BATAVIA
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BremenBT-Bold
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /CASMIRA
 /Castellar
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CharlesworthBold
 /Chiller-Regular
 /Clarendon-Bold
 /Clarendon-Book
 /Clarendon-Condensed-Bold
 /ClarendonExtended-Bold
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothic-Light
 /Coronet
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DauphinPlain
 /EdwardianScriptITC
 /ELEGANCE
 /Elephant-Italic
 /Elephant-Regular
 /ELLIS
 /English111VivaceBT-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EXCESS
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /GENUINE
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyHandtooledBT-Regular
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HELTERSKELTER
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HERMAN
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /ISABELLE
 /JOAN
 /Jokerman-Regular
 /JuiceITC-Regular
 /JUSTICE
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /Lithograph-Bold
 /LithographLight
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MANDELA
 /Mangal-Regular
 /Marigold
 /MATTEROFFACT
 /MaturaMTScriptCapitals
 /MICRODOT
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /NATURALBORN
 /NEOLITH
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /OPENCLASSIC
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PoorRichard-Regular
 /PosterBodoniBT-Roman
 /PRETEXT
 /Pristina-Regular
 /PUPPYLIKE
 /Raavi
 /RADAGUND
 /RageItalic
 /Ravie
 /REALVIRTUE
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /SHELMAN
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /Stencil
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TRENDY
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ABSALOM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Albertus-Bold
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMedium-Italic
 /Algerian
 /ALIBI
 /AllegroBT-Regular
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BankGothicBT-Medium
 /BaskOldFace
 /BATAVIA
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BremenBT-Bold
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /CASMIRA
 /Castellar
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CharlesworthBold
 /Chiller-Regular
 /Clarendon-Bold
 /Clarendon-Book
 /Clarendon-Condensed-Bold
 /ClarendonExtended-Bold
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothic-Light
 /Coronet
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DauphinPlain
 /EdwardianScriptITC
 /ELEGANCE
 /Elephant-Italic
 /Elephant-Regular
 /ELLIS
 /English111VivaceBT-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EXCESS
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /GENUINE
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyHandtooledBT-Regular
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HELTERSKELTER
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HERMAN
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /ISABELLE
 /JOAN
 /Jokerman-Regular
 /JuiceITC-Regular
 /JUSTICE
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /Lithograph-Bold
 /LithographLight
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MANDELA
 /Mangal-Regular
 /Marigold
 /MATTEROFFACT
 /MaturaMTScriptCapitals
 /MICRODOT
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /NATURALBORN
 /NEOLITH
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /OPENCLASSIC
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PoorRichard-Regular
 /PosterBodoniBT-Roman
 /PRETEXT
 /Pristina-Regular
 /PUPPYLIKE
 /Raavi
 /RADAGUND
 /RageItalic
 /Ravie
 /REALVIRTUE
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /SHELMAN
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /Stencil
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TRENDY
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ABSALOM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Albertus-Bold
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMedium-Italic
 /Algerian
 /ALIBI
 /AllegroBT-Regular
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BankGothicBT-Medium
 /BaskOldFace
 /BATAVIA
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BremenBT-Bold
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /CASMIRA
 /Castellar
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CharlesworthBold
 /Chiller-Regular
 /Clarendon-Bold
 /Clarendon-Book
 /Clarendon-Condensed-Bold
 /ClarendonExtended-Bold
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothic-Light
 /Coronet
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DauphinPlain
 /EdwardianScriptITC
 /ELEGANCE
 /Elephant-Italic
 /Elephant-Regular
 /ELLIS
 /English111VivaceBT-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EXCESS
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /GENUINE
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyHandtooledBT-Regular
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HELTERSKELTER
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HERMAN
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /ISABELLE
 /JOAN
 /Jokerman-Regular
 /JuiceITC-Regular
 /JUSTICE
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /Lithograph-Bold
 /LithographLight
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MANDELA
 /Mangal-Regular
 /Marigold
 /MATTEROFFACT
 /MaturaMTScriptCapitals
 /MICRODOT
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /NATURALBORN
 /NEOLITH
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /OPENCLASSIC
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PoorRichard-Regular
 /PosterBodoniBT-Roman
 /PRETEXT
 /Pristina-Regular
 /PUPPYLIKE
 /Raavi
 /RADAGUND
 /RageItalic
 /Ravie
 /REALVIRTUE
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /SHELMAN
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /Stencil
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TRENDY
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

